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Abstract—Image restoration is a long-standing problem in
image processing and low-level computer vision. Recently,
discriminative convolutional neural network (CNN)-based ap-
proaches have attracted considerable attention due to their
superior performance. However, most of these frameworks are
designed for one specific image restoration task; hence, they
seldom show high performance on other image restoration tasks.
To address this issue, we propose a flexible deep CNN framework
that exploits the frequency characteristics of different types of
artifacts. Hence, the same approach can be employed for a variety
of image restoration tasks by adjusting the architecture. For
reducing the artifacts with similar frequency characteristics, a
quality enhancement network that adopts residual and recursive
learning is proposed. Residual learning is utilized to speed
up the training process and boost the performance; recursive
learning is adopted to significantly reduce the number of training
parameters as well as boost the performance. Moreover, lateral
connections transmit the extracted features between different
frequency streams via multiple paths. One aggregation network
combines the outputs of these streams to further enhance
the restored images. We demonstrate the capabilities of the
proposed framework with three representative applications:
image compression artifacts reduction (CAR), image denoising,
and single image super-resolution (SISR). Extensive experiments
confirm that the proposed framework outperforms the state-of-
the-art approaches on benchmark datasets for these applications.

Index Terms—Image restoration, Flexible CNN framework,
Image decomposition, Recursive learning, Residual learning.

I. INTRODUCTION

Image restoration (IR), as one of the most fundamental
tasks in image processing and low-level computer vision,
aims to reconstruct the latent high-quality (HQ) image from
its distorted observation [1]. Degradation can arise from
coding artifacts, resolution limitations, transmission noise,
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object motion, and camera movement or a combination of
them. Accordingly, IR includes image compression artifacts
reduction (CAR), image denoising, single image super-
resolution (SISR), deblurring, dehazing, etc.

Due to the capability of providing state-of-the-art perfor-
mance for high-level computer vision problems, deep learning
(DL)-based methods have become a more recent trend to
solve the IR problem [3]. Moreover, by focusing on learning
a nonlinear mapping between the distorted images and their
corresponding HQ images, regression-type neural networks
have demonstrated impressive results on inverse problems with
exact models [4].

The first DL-based solutions to SISR and image CAR
tasks were the SRCNN [5] and ARCNN [6], respectively.
They have demonstrated the effectiveness of CNNs by
solely adopting shallow networks. However, due to the
limited representation capacity of shallow networks, they still
suffer from oversmoothing the reconstructed images. As a
deep network, although DnCNN [7] is designed for image
denoising, it shows promising performance on image CAR
and SR as well. The end-to-end deep networks RED30 [8],
ARN [9], MemNet [10] and MWCNN [11] target solving the
IR problem; however, all of them treat all types of artifacts
equally. Therefore, the different characteristics of various
artifacts are not taken into account. Unfortunately, without
specific consideration of various artifacts, one can observe
the following issue. Specifically, the reduction of one type
of artifact can lead an unintentional increase in other types
of artifacts [3, 12]. In addition, while seeking to fulfill “the
deeper the better” premise, most of the deep networks suffer
from high computational cost due to an enormous number
of training parameters. For example, RED30 and ARN have
4,131k and 1,145k training parameters, respectively, while the
number of training parameters of our network for image SR
is only 594k.

Based on the analysis of the three main degradations: coding
artifacts (or compression artifacts), resolution limitations, and
transmission noise, we found that all introduced artifacts can
be classified into either a high-frequency (HF) or a low-
frequency (LF) group. For the example of image CAR, we
take JPEG as the compression algorithm. By adopting the
block-based discrete cosine transform (BDCT) together with
coarse quantization of the low spectral coefficients, JPEG
compression causes blocking artifacts at the 8 × 8 block
borders and ringing artifacts in the smooth portions of the
images [13]. Moreover, the truncation of high-frequency DCT
coefficients introduces blurring artifacts. While blocking and
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Figure 1. Framework of the proposed flexible deep network architecture, where each component of the framework can be removed if the distorted image
only suffers from HF/LF artifacts. Here, we use the compression artifact reduction process as an example.

ringing artifacts belong to the HF artifacts group, blurring
artifacts belong to the LF artifacts group. These two artifact
groups can be successfully separated by decomposing the
compressed images into an HF and LF component, as well.
Therefore, to reduce the artifacts, the HF and LF components
of the compressed image should be manipulated separately.
The target of HF component processing is to reduce the
blocking and ringing artifacts, and the target of LF component
processing is to reduce the blurring artifacts. For image
denoising, the noise is involved in the HF component of the
noisy images. Moreover, it is important to note that some
blurring artifacts are introduced into the LF component after
noise extraction. Thus, the target of LF component processing
is also to reduce the blurring artifacts. In terms of the image
SR, super-resolved images suffer from blurring artifacts that
are caused by inaccurate estimations of the missing pixels
during the interpolation process [14]. Hence, in this case, the
target for image SR can be regarded as reducing the blurring
artifacts introduced by interpolation. We believe that better IR
performance can be obtained on these tasks by specifically and
separately processing the HF and LF artifacts.

Motivated by the above observation, in this work, we
propose a flexible deep CNN framework for image restoration,
especially image CAR, denoising and SR. The whole
framework consists of four modules: image decomposition,
a quality enhancement network on each decomposed part,
lateral connections and an aggregation network. Each of
them has an explicit function and can be removed from
the whole framework depending on the specific task. Image
decomposition is used for decomposing the distorted image
into a texture layer (HF component) and a structure layer
(LF component) with the goal of separating HF and LF
artifacts. The quality enhancement network aims to enhance
the quality of the corresponding image component by reducing
the HF/LF artifacts. The lateral connections are developed
for progressively transmitting the HF information from the
texture layer to the structure layer in order to boost the
enhancement process on the structure stream. The enhanced
texture and structure layers are combined and fed into an
aggregation network to generate the final enhanced image.
Hence, the proposed work is different from [15–17], where
only the HF component is enhanced by learning-based
approaches and the final images are obtained by directly
adding the enhanced HF component back to the corresponding
LF component. Additionally, multipath residual learning and

recursive learning are adopted in the quality enhancement
network to speed up network training by easing this process
[7, 18–21] and reduce the number of training parameters.
The residual units in the same quality enhancement network
share weights. Hence, the number of training parameters of
the quality enhancement network is fixed and equivalent to
that of a 4-layer CNN.

The main contributions of the proposed work are summa-
rized as follows:
(1) We propose a flexible deep CNN framework for IR

that can be easily adapted to a specific IR problem
by simply removing one or more certain modules. In
this way, each IR problem can be handled by a particular
framework.

(2) We combine global, local and intermediate residual
learning with recursive learning to form multipath
recursive residual learning in the quality enhancement
network. This combination is novel and allows helping
not only the gradient flow but also the transmission of
low-level features. In particular, benefiting from the shared
weights between each residual unit, the network with
fewer parameters becomes more compact. Furthermore,
the number of training parameters will not increase with
the network depth.

(3) We set up lateral connections between the texture
and structure streams, which allows transmitting
the features between the two streams. The lateral
connections transmit the extracted features at different
levels from one stream to the other via multiple paths.
Due to weight sharing, the number of parameters of all
these paths is equivalent to that of a 1-layer CNN.

The remainder of this paper is organized as follows. In
Sec. II, we describe the related work about image restoration
from three perspectives. Sec. III introduces the details of each
component in our flexible framework. The experimental results
are presented in Sec. IV, showing significant improvements for
the proposed idea in image CAR, Gaussian image denoising,
and SISR. Ablation analysis is provided as well. Sec. V
concludes the paper and describes our future work.

II. RELATED WORK

For several decades, image restoration (IR) has remained
an active research topic, and plenty of approaches have been
proposed in the literature. These approaches can be classified
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into image prior-based [22], example-based [23], dictionary-
based [24, 25], transformed domain-based [26, 27] and the
currently most popular DL-based approaches [6, 28]. Our work
is inspired by the state-of-the-art works on IR, especially those
based on DL. Therefore, we focus on discussing the related
works on DL-based JPEG image CAR, image denoising and
SISR.

A. JPEG Compression Artifacts Reduction
Dong et al. [6] were the first to introduce a convolutional

neural network (i.e., ARCNN) to learn an end-to-end mapping
between compressed and restored images. Although ARCNN
has demonstrated the effectiveness of deep learning on
JPEG CAR by merely using a 4-layer network, due to the
limited capacity of a shallow network, the reconstructed
images still lack sharp edges and have overly smoothed
texture regions. Nevertheless, they encountered difficulties
in obtaining better performance with a deeper network by
simply stacking the convolutional layers for such a low-
level vision task. However, the training difficulties have been
mitigated by the newly proposed network designs, e.g., local
residual learning (LRL) [20], where the residual learning is
performed locally within each residual unit, and global residual
learning (GRL) [28], where the residual learning is performed
directly between the input and the output. Although the
network in [11] achieves superior performance compared to
ARCNN, the number of involved training parameters is up to
16,140k. By applying DCT-domain prior knowledge of JPEG
compression to the pixel-domain, Guo et al. [30] built a dual-
domain 20-layer network with 1,114k training parameters.
However, while the DCT-domain prior knowledge improves
the performance of JPEG CAR, it limits its application to
other compression algorithms, e.g., JPEG2000. Moreover,
since JPEG compression causes both HF and LF artifacts in the
distorted images, to the best of our knowledge, the proposed
work is the first to adopt DL networks to separately reduce
the artifacts based on their frequency characteristics.

B. Image Denoising
Chen et al. [31] proposed a trainable nonlinear reaction

diffusion (TNRD) model that can be expressed as a
feedforward deep network by unfolding a fixed number of
gradient descent inference steps. Burger et al. [32] successfully
applied a plain multilayer perceptron (MLP) to remove the
noise, which can achieve promising performance and is able
to compete with the previous state-of-the-art denoising method
BM3D [33]. Xie et al. [34] combined sparse coding and deep
networks to handle Gaussian noise removal. Zhang et al.
[7] proposed a deep residual neural network called DnCNN.
Different from the existing discriminative denoising models
that usually train a specific model for additive white Gaussian
noise (AWGN) at a certain noise level, DnCNN is able to
handle Gaussian denoising with an unknown noise level.
However, DnCNN heavily relies on a massive number of
training images, which are added with various noise levels in
the range [0,55]. Although TNRD and DnCNN are designed
for image denoising, they show good performance on image
CAR and SISR, as well.

C. Image Super-resolution
DL-based SR solutions have gained increasing research

interest in recent years. Dong et al. [5] utilized a 3-layer
fully convolutional network (SRCNN) to learn the nonlinear
mapping between HR and LR patches. Kim et al. [28]
proposed a 20-layer convolutional network (VDSR) with GRL
that significantly improves the reconstruction performance. Shi
et al. [35] proposed a contextualized multitask convolutional
network to super-resolve images while well preserving the
structural details. However, the main drawback of these deep
networks is that the number of learned parameters linearly
increases with the network depth. To address these issues,
on the one hand, Kim et al. [36] introduced a recursive
layer into the network DRCN for image SR, where the same
weights are applied to feature maps recursively. Therefore, the
training parameters do not increase when more recursions are
performed in the recursive layer. On the other hand, Lai et al.
[37] proposed a Laplacian pyramid super-resolution network
(LapSRN) to progressively reconstruct the subband residuals
of high-resolution images. Since the network takes low-
resolution images as the input, the computational complexity is
significantly reduced. However, due to the pyramid structure,
LapSRN is hard to extend to solve other IR tasks. A similar
problem is also encountered by EDSR [38], RDB [39], RCAN
[40] and IDN [41], where an upsampling network is adopted
at the end of the proposed framework to obtain the final
recovered high-resolution images.

III. PROPOSED FRAMEWORK

In this section, for simplicity we consider JPEG image
compression as an example, which yields both HF and LF
artifacts. We do so to explain the function of each module
of the proposed framework. Then, the modified frameworks
for image denoising and SR will be introduced. Without loss
of generality, we assume that the input image is a single-
channel grayscale image. The proposed approach can be easily
extended to common RGB images by repeating the proposed
process for each color channel.

A. Problem Statement
Denote x̂ as the latent image (the ground truth image)

and y as the degraded observation of it. A typical image
degradation model can be written as:

y = Hx̂ +N (1)

where H denotes the degradation operator and N denotes the
additional noise. Different IR problems can be defined based
on the form of H. For example, in image denoising H is an
identity matrix. In image deblurring, H is a blurring operator.
In image SR, H is a composition operator of blurring and
downsampling. Therefore, the solution to IR can be expressed
as obtaining an estimation x by minimizing the objective
function as follows:

x = argmin
x̂
{∥y −Hx̂∥22} (2)

The linear system in Eq. (1) is generally ill-posed, i.e., we
cannot obtain x by directly solving Eq. (2). To address this
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problem, traditional image restoration methods usually employ
regularization techniques by adding some constraints to derive
the estimation in Eq. (2) as follows:

x = argmin
x̂
∥y −Hx̂∥22 + λR(x̂) (3)

where λ is a Lagrange multiplier directly controlling the
significance of the regularity term R(x̂). Therefore, we can
estimate the unknown latent image x̂ from its observation y.

Referring to Fig. 1, the proposed framework starts with
the decomposition of the degraded images, in order to
ensure that the LF and HF artifacts are contained within
the corresponding components of images. Therefore, the
input image is formulated as the superposition of a structure
component (LF component) and a texture component (HF
component), i.e.,

Ilq = Ilqs + Ilqt (4)

where Ilq is the low-quality image, Ilqs is the structure
component corresponding to the smooth areas of the image,
and Ilqt is the texture component corresponding to the fine
details. The structure and texture components are processed
separately by the proposed quality enhancement network with
different targets. Since the decomposition is linear, Eq. (3) is
equivalent to

Ihqs = argmin
Îhq
s

{∥Ilqs −HsÎ
hq

s ∥22 + λsR(Î
hq

s )} (5a)

Ihqt = argmin
Îhq
t

{∥Ilqt −HtÎ
hq

t ∥22 + λtR(Î
hq

t )} (5b)

Similarly, we can obtain the estimated high-quality image Ihqs
and Ihqt for the unknown latent image Î

hq

s and Î
hq

t from their
observation Ilqs and Ilqt , respectively. By learning mapping
parameters Θ through an optimization of the loss function
L on training data, the objective function for the proposed
quality enhancement network can be expressed as:

minL(Θs) = 1
N ∑

N
i=1 ∥Î

hq

si −H(I
lq
si ,Θs)∥22 (6a)

minL(Θt) = 1
N ∑

N
i=1 ∥Î

hq

ti −H(I
lq
ti
,Θt)∥22 (6b)

where H is the mapping function of the quality enhancement
network. Therefore, the original regularization-based solutions
((5a) and (5b)) can be solved, respectively, by finding the
optimal solutions on the structure and texture components
based on the proposed DL network ((6a) and (6b)). In the
following, the details of each part are discussed.

B. Image Decomposition

The problem of extracting the HF artifact-free structure
image from the degraded image is also ill-posed. To obtain an
accurate estimation, the decomposing step is posed as a total-
variation (TV)-based structure extraction problem described in
[42]. Therefore, the optimal structure image is obtained first.
Then, the texture image is obtained as the difference between
the compressed image and the structure image (see Fig. 2 for
an example).

Let Ilq(x, y) be denoted as each pixel on the observed
compressed image and Ilqs be denoted as the optimal structure
image, which is free from high-frequency compression
artifacts. Our constrained minimization problem can be
expressed as:

Ilqs = argmin
Ĩlqs

J(Ĩlqs ) (7)

with
J(Ĩlqs ) =

1

2
∥Ilq −HĨ

lq

s ∥22 + λsTV(Ĩlqs ) (8)

where Ĩ
lq

s represents a possible structure image and is blurred
by a blurring operator H [43]. Since λs controls the weight
of the regularity term, it needs to be adjusted according to
the compression factor. Higher compression requires a larger
λs, which guarantees the structure component to be free from
HF artifacts. Eq. (8) can be solved by the half-quadratic
splitting algorithm [44] based on the idea of introducing
auxiliary variables to expand the original terms and update
them iteratively.

C. Quality Enhancement Network

After image decomposition, the HF and LF artifacts are
successfully separated and can be reduced along with the
corresponding image components. Hence, we develop a
quality enhancement network to fulfill this task. Inspired by
[20] and [28], we adopt LRL (Fig. 3(a)) and GRL (Fig.
3(b)) in the proposed network. In addition, we propose a
multipath intermediate residual learning (IRL) between the
GRL and LRL to further help the gradient flow and the
transmission of low-level features. Furthermore, to address the
high computational and storage cost caused by the enormous
number of training parameters of deep networks, recursive
learning [36] is adopted to tackle this problem. Therefore,
the quality enhancement network is in a multipath recursive
residual learning structure (Fig. 3(c)). The basic unit of the
proposed network is called the residual unit (RU), and several
units that are stacked together form one recursive block
(RB) (shown in purple in Fig. 3(c)). In the following, the
architecture and training settings are given in detail.

1) Residual Unit: The involved residual unit has the same
architecture as ResNet but relies on an opposite activation
order, which moves the activation layers (BN and ReLU)
before the convolutional layer. This modification has been
validated to be more efficient in network training and
can achieve better performance than the original activation
architecture [45]. Due to the maintenance of the original chain
structure of the residual unit, all the advantages in ResNet
e.g., fast convergence, are well kept in the proposed network
architecture. The formulation of one residual unit can be
expressed as:

x̂u = F(xu,Wu) + xu
= fu

2 (σ(fu
1 (σ(xu),Wu

1 )),Wu
2 ) + xu (9)

where xu and x̂u are the input and output of the u-th residual
unit, respectively, F denotes the residual mapping function
for one residual unit, fu

i is the mapping function of the i-
th convolutional layer in the u-th unit, Wu

i represents a set
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Figure 2. Image decomposition example for an uncompressed and compressed image (QF10) pair (λgt = 0.02 and λs = 0.04). We can notice that most of the
blocking and ringing artifacts exist in the texture component of the compressed image, while most of the blurring artifacts exist in the structure component.
The last column shows the structure and texture components of the enhanced image obtained by the proposed quality enhancement network.
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Figure 3. Simplified (a) LRL [20] network architecture shown with two
residual units; (b) GRL [28] network architecture; (c) the proposed multipath
recursive residual learning (MPRRL) network shown with two recursive
blocks, each of which includes two residual units sharing the same weights
(represented in light green and blue).

of weights (the biases are omitted for simplicity) in the i-th
convolutional layer, and function σ denotes ReLU activation.

2) Recursive Block: We denote the function of each
recursive block as B, the corresponding input and output for
the b-th recursive block are xb and x̂b, respectively, and W b

i

represents the weights of the i-th residual unit in the b-th
recursive block. Therefore, the example shown in Fig. 3(c),
where one recursive block consists of two residual units, can
be expressed as:

x̂b = B(xb) = F(F(xb,W b
1 )+xb,W b

2 )+F(xb,W b
1 )+2xb (10)

From Eq. (10), we observe that the architecture of the proposed
recursive block passes the output of each intermediate residual
unit to the end of the recursive block, which can well
indicate the low-level features have been passed to the deep
convolutional layers.

In the given example in Fig. 3(c), the proposed network with
two recursive blocks in a multipath mode can be expressed as:

x̂ = H(x) = frec(B(B(f(x)) + f(x)) + f(x)) + x (11)

where x and x̂ are the input and output of the network,
respectively, f and frec are the mapping functions of the first
and last convolutional layers, and H represents the mapping
function of the proposed quality enhancement network.

Given a training set {xi,yi}Ni=1, where N is the number of
training patches and yi is the ground truth patch of the low
quality patch xi, the loss function of the proposed network is

L(Θ) = 1

N

N

∑
i=1
∥H(xi,Θ) − (yi − xi)∥22 (12)

where Θ denotes the network parameter set. The training
ground truth patches for the structure and texture streams are
obtained from the uncompressed images and the corresponding
texture layers, respectively.

3) Flexible Network Structure: The proposed quality
enhancement network has a flexible architecture as well, which
benefits from the three kinds of residual learning and the
designs of the RU and RB. Given one specific depth, the
number of residual units denoted as U , and the number
of recursive blocks denoted as B can be freely adjusted.
Specifically, the depth of the proposed network is calculated
as:

d = 2 + 2 ×U ×B (13)

If d = 20, the network has the following three versions:
1B9U (9 residual units in only one recursive block), 3B3U (3
residual units in each recursive block, and 3 recursive blocks
in total) and 9B1U (only one residual unit in each recursive
block, and 9 recursive blocks in total), referring to Fig. 4. The
1B9U version could be regarded as ResNet combined with
GRL. Only the 3B3U version contains three kinds of residual
learning. Therefore, the 20-layer quality enhancement network
in the 3B3U architecture is applied separately to the structure
and texture streams in our proposed flexible framework. It is
worth noting that the deeper the network is, the more flexible
the network architecture will be.
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Figure 4. An example to show the flexible architecture of the proposed quality
enhancement network with network depth 20.

D. Lateral Connections

Along with multiple nonlinear mappings, the structure
and texture images are enhanced progressively, and the
corresponding outputs are combined to generate preliminary
recovered high-quality images. Instead of combining the
enhanced images at the end, lateral connections are applied to
transmit the improved HF information at each level from the
texture stream to the counterpart of the structure stream, which
can boost up the performance of HF information recovery in
the structure stream.

A detailed example of lateral connections is illustrated in
Fig. 5, where each path of the lateral connections is formed
by a single convolutional layer with ReLU. The connections
transform the extracted feature maps x̂u

t from the texture
stream to the lateral feature maps x̂l after each residual unit.
Then, these lateral feature maps are combined in a pixelwise
manner with the corresponding feature maps on the structure
stream x̂u

s . They can thus continue the following nonlinear
mappings on the structure stream. To keep the whole network
compact, we apply the weight sharing strategy. As a result,
the total number of training parameters of all the lateral
connections is equivalent to that of a single layer CNN.
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Figure 5. Structure of lateral connections.

E. Aggregation Network

The structure stream and the texture stream are trained
together with lateral connections, but separately output
an enhanced version of the original corresponding image
component, denoted as Ihqs and Ihqt , respectively. Then, the
corresponding outputs are added in a pixelwise manner to
form an enhanced input image, i.e., Ihqagg = Ihqs + Ihqt . Finally,
Ihqagg is fed into a nonlinear aggregation network, whose
architecture is the same as the quality enhancement network to
further improve the restored image. The patches obtained from
the uncompressed images are used to supervise the training
process of the aggregation network. At this stage, a dual-
stream 40-layer image restoration framework is formed for

the image CAR and named “Pro-CAR” in the experimental
results section.

F. Framework Architectures for Image Denoising and SR

       

(a) Original image  (b) Noisy image  (c) Structure  (d) Texture  

Figure 6. Image “parrot” with noise level 50 and its corresponding structure
and texture component.

As we described previously, for image denoising, the
underlying AWGN can be regarded as an HF artifact, which
can be extracted from the distorted image by the image
decomposition module. However, unlike the compression
artifacts, this noise is randomly overlaid on the image, and
it dramatically affects the original HF information (Fig.
6(b)). Consequently, the distorted image can be decomposed
into a blurred structure component (Fig. 6(c)) and a noisy
texture component (Fig. 6(d)). While taking the computational
efficiency into account, in this task, the very noisy texture
layer is shelved, and the texture stream is removed, as are the
lateral connections. Therefore, the whole framework for the
denoising task can be represented by the image decomposition
module leading two DL networks connecting in a cascaded
way (shown in Fig.7(a)). For image SR, the dominant artifacts
introduced by the inaccurate estimation of the missing pixels
can be regarded as LF artifacts. Hence, the architecture of the
proposed framework for image SR is even more compact than
that for image denoising. Without the image decomposition
module, there are only two DL networks connecting in a
cascaded way. In this case, the bicubic upsampled image
is fed into the quality enhancement network directly as the
LF component of the distorted images and the aggregation
network is utilized to further enhance the image quality
(shown in Fig.7(b)). The superior performance of the proposed
framework architectures will be shown in the experimental
results, Sec. IV-B and Sec. IV-C, and named “Pro-DE” and
“Pro-SR”, respectively. The architecture summary of each
framework can be found in Table I, where “ID” represents the
image decomposition module; “QEN” represents the quality
enhancement network; “LC” represents the lateral connections;
and “AN” represents the aggregation network. Moreover,
we adopt the framework “Pro-C”, which has two cascaded
networks QEN and AN as the single-stream benchmark
framework.

Table I
Architecture summary of each framework

Framework Pro-CAR Pro-DE Pro-SR Pro-C
# of Conv layers 60 40 40 40
# of Filters/layer 128 128 128 128

Filter size 3 3 3 3
# of Para(k) 1039 594 594 594

Involved ID, QEN(S&T), ID, QEN(S), QEN, AN QEN, ANmodules LC, AN AN
Target CAR Denoising SR Benchmark
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Table II
Average PSNR(dB) and SSIM results of different methods for image CAR task on LIVE1 dataset [47].

````````Metrics
Algorithms QF 10

JPEG SA-DCT ARCNN DnCNN-3 RED30 DRRN ARN MemNet MWCNN IDN Pro-C Pro-CAR
PSNR 27.77 28.66 28.73 29.19 29.32 29.21 29.27 29.45 29.69 29.28 29.32 29.41
SSIM 0.7910 0.7977 0.8001 0.8123 0.8161 0.8146 0.8077 0.8193 0.8254 0.8158 0.8157 0.8191

````````Metrics
Algorithms QF 20

JPEG SA-DCT ARCNN DnCNN-3 RED30 DRRN ARN MemNet MWCNN IDN Pro-C Pro-CAR
PSNR 30.07 30.82 30.89 31.59 31.69 31.19 31.34 31.83 32.04 31.55 31.59 31.73
SSIM 0.8680 0.8658 0.8670 0.8802 0.8817 0.8678 0.8696 0.8846 0.8885 0.8783 0.8790 0.8824

# of Para(k) — — 106 665 4131 297 1145 677 16140 692 594 1039
Runtime (s) — 18.66 0.32 — 10.65 3.88 — 2.10 — 0.51 0.99 1.64

Quality 
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Network

Aggregation 

Network

Image 

Decomposition

(LF)

(HF)
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Quality 

Enhancement
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Aggregation 
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Bicubic
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Figure 7. Corresponding frameworks for image denoising (a) and SR (b).

IV. EXPERIMENTAL RESULTS

In this section, we conduct various experiments on
three representative image restoration tasks: JPEG image
CAR, Gaussian image denoising, and SISR. By adjusting
the architecture of the proposed framework and adopting
the proposed quality enhancement network, our method
outperforms the state-of-the-art image restoration algorithms
in terms of PSNR and SSIM [46]. In this paper, we only focus
on the restoration of the luminance channel (in YCrCb space).
Our implementations are available on our project webpage1.

Taking into account the network training complexity, the
small patch training strategy is adopted. Training images are
split into 31 × 31 patches with a stride of 21. The Adam
[48] solver is used with a batch size of 32 (for the dual-
stream framework of image CAR) or 64 (for the cascade
framework of image denoising and SR). The first and second
momentum parameters are set to 0.9 and 0.999, respectively,
and the weight decay is 10−4. The initial learning rate is
0.001, which then decays every 5 epochs by a factor of 10.
Unless otherwise specified, all the convolutional layers have
128 filters of size 3 × 3. We use the deep learning platform
Caffe [49] on an NVIDIA GTX TITAN X GPU with 12 GB
of RAM. The training time of a 40-layer network for image
CAR is approximately 4 days, and for image denoising and
SR, it is approximately 2 days.

A. Image Compression Artifacts Reduction

In this subsection, we first present the specific implementa-
tion details. Then, we compare the proposed framework with

1The source code is available at https://github.com/jzrita/Flexible Deep
CNN for IR.

state-of-the-art algorithms or networks on three benchmark
datasets. Subsequently, the running time of CAR approaches
is discussed. Finally, we provide the ablation performance
analysis of each module of the proposed CAR framework.

1) Implementation Details: In this experiment, we apply
the standard JPEG compression scheme, and use the JPEG
quality settings QF 20 (mid-quality) and QF 10 (low-quality)
in the MATLAB JPEG encoder. For choosing the value of λs

in this task, we follow the suggestion in [12], such that for
higher QF, smaller λs needs to be chosen, and 0.02 ≤ λs ≤
0.05. Hence, in our work, at QF 10, λs = 0.04. The MSE value
of the training images at QF 10 is approximately double that
at QF 20, i.e., MSE(IQF10)

MSE(IQF20) ≈ 2; therefore, the value of λs for
QF 20 is set to half of that of QF 10, i.e., λs = 0.02. To yield
the texture layers from the GT images for training, the value
of λgt is set to 0.02.

For a fair comparison, we follow [6] and adopt 400 images
from the BSDS500 database [50] as the training set. For
validation, we adopt the widely used datasets Set14 [51],
LIVE1 [47], BSDS500 [50] (the remaining 100 images) and
DIV2K [52]. BSDS500 and DIV2K are large-scale datasets;
in particularly, each image in DIV2K has a resolution up to
2K and is full of details. Hence, it is a challenging dataset for
image restoration. Data augmentation is performed: first, we
rotate the training images by 90○, 180○, and 270○; and second,
we flip them horizontally. Consequently, with a patch size of
31 × 31, we extract 985,600 training image pairs.

Table III
Average PSNR(dB)/SSIM results of different methods for image CAR task

on BSDS500 [50] and DIV2K [52].

Methods

B
SD

S5
00

QF 10 QF 20

D
IV

2K

QF 10 QF 20
JPEG 26.62/0.7690 29.71/0.8325 29.54/0.8183 32.04/0.8802

SA-DCT 28.38/0.7678 30.45/0.8432 30.66/0.8481 33.03/0.8958
ARCNN 28.46/0.7702 30.46/0.8441 30.94/0.8546 33.32/0.9009
RED30 28.93/0.7862 31.11/0.8586 31.25/0.8605 33.73/0.9073
DRRN 28.87/0.7850 30.72/0.8430 31.20/0.8588 33.71/0.9065

MemNet 29.02/0.7890 31.23/0.8613 31.45/0.8644 33.91/0.9099
IDN 28.87/0.7844 30.98/0.8534 31.22/0.8598 33.61/0.9045

Pro-C 28.92/0.7838 30.72/0.8434 31.19/0.8593 33.79/0.9072
Pro-CAR 28.99/0.7877 31.15/0.8577 31.58/0.8779 34.17/0.9275

2) Quantitative Comparisons: In this part, the proposed
dual-stream framework for image CAR is quantitatively
compared with 9 state-of-the-art approaches, including the
non-DL-based method: SA-DCT [53], and DL-based methods:
ARCNN [6], RED30 [8], DRRN [21], DnCNN-3 [7], ARN
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GT monarch PSNR/SSIM JPEG 30.12/0.8734 SA-DCT 32.12/0.9272 TNRD 33.10/0.9345

ARCNN 32.93/0.9301 MemNet 33.58/0.9390 IDN 33.25/0.9346 Pro-CAR 33.50/0.9386

Figure 8. Visual quality comparison for image “monarch” from Set14 [51] for image CAR task at QF 10. The corresponding PSNR(dB) and SSIM results
are listed below the corresponding images. This figure is best viewed on screen.

[9], MemNet [10], MWCNN [11] and IDN [41] 2. Table
II and Table III show the quantitative results on LIVE1,
BSDS500 and DIV2K datasets with JPEG quality (QF) 10
and 20, respectively. In Table II, the proposed dual-stream
framework with comparatively less training parameters can
still achieve the performance ranking in the top three on the
LIVE1 dataset. Compared with the retrained ARCNN with
zero paddings that has only 4 convolutional layers, our deep
architecture obtains a 0.68 dB and 0.84 dB PSNR gain at
QF 10 and 20, respectively, and the improvement in terms of
SSIM can be up to 0.0190 and 0.0154. Even larger PSNR
gains can be obtained on BSDS500 and DIV2K reported in
Table III. This comparison demonstrates the benefit of the very
deep architecture. Moreover, compared with RED30 which is
a single-stream network, with 78.41% less training parameters,
the proposed framework can still achieve a 0.09 dB and 0.04
dB PSNR gain at QF 10 and 20 on LIVE1, respectively. This
comparison demonstrates the effectiveness of the proposed
dual-stream architecture and the recursive learning strategy.
Compared with MWCNN, which has the best performance
on LIVE1 dataset, the proposed framework saves 93.56%
of GPU memory usage for storing the model. Compared
with MemNet, which has the second best performance, the
proposed framework has a faster running speed. Therefore, the
proposed framework has a better tradeoff between model size,
running time and performance. Moreover, by achieving the
best results on the challenging dataset DIV2K, the proposed
framework shows its superiority in reconstructing the images
with full textures.

In Fig. 9, we draw the probability distribution of PSNR and
SSIM gains over several baselines for CAR on BSDS500 at
QF 10. Apparently, our gains over all these baselines in both
PSNR and SSIM are positive in the vast majority of the test
images, which shows the superiority of the proposed method.

3) Qualitative Comparisons: Qualitative comparison re-
sults for QF 10 are shown in Fig. 8. Strong blocking artifacts
are visible in the JPEG compressed images. SA-DCT produces

2When we conduct IDN on CAR and denoising tasks, the deconvolutional
layer has been replaced by a convolutional layer.
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Figure 9. The distributions of the PSNR gains and SSIM gains of the proposed
method over baselines for the image CAR task on the BSDS500 dataset at
QF 10.

blurring effects on image edges. ARCNN significantly
improves the image quality; however, it also oversmooths
some image details. TNRD recovers the compressed images
well. However, MemNet, IDN, and Pro-CAR reconstruct
the images with sharper edges than TNRD. The deeper the
network is, the sharper the edges are.

4) Running Time: In addition to visual quality, another
important aspect for an image restoration method is the
running speed. For a fair comparison, we profile the
time consumption of all the non-DL-based algorithms in
a MATLAB 2015b environment on a PC with an Intel
CPU at 3.30 GHz with 16 GB RAM. While all the DL-
based algorithms are implemented using the same GPU
environment3. Table II shows the average running time4 of
different algorithms for image CAR at QF 10 on LIVE1. It can
be seen that as a deep network, the proposed 40-layer dual-
stream framework can still achieve lower time consumption
than the networks with fewer layers. For example, DRRN has
20-layers with a network depth that is half of ours but has
consumed 2.24s more time on each image. With a simpler

3DnCNN and MWCNN are implemented in MatConvNet; however, we
failed to set up the same testing environment. Hence, there is no running time
for them.

4We run each algorithm on LIVE1 5 times, and each time calculate the
average time consumption on each image. Then, the final average running
time is obtained by averaging the 5 running times.
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architecture than Pro-CAR, the Pro-C consumes less time than
the dual-stream architecture. However, this inevitably suffers
from some performance decrease.

5) Ablation Analysis: In this subsection, we evaluate the
effectiveness of each module in the proposed Pro-CAR by
comparing corresponding frameworks without the particular
modules. Table IV shows the ablation analysis results. In Table
IV, the compared frameworks from top-to-bottom are: our
baseline DnCNN, which has none of the proposed modules;
a dual-stream framework with image decomposition (ID) but
using DnCNN instead of the quality enhancement network
(QEN); a deep QEN with 6 recursive blocks (RBs) where each
RB has 3 residual units (RUs); the single-stream framework
Pro-C; Pro-CAR without the lateral connections (LC) and the
aggregation network (AN), which can also be regarded as
“dual-QEN”; Pro-CAR without LC; Pro-CAR without AN;
and our proposed framework Pro-CAR.

Table IV
Ablation Analysis of each module for image CAR task on LIVE1 at QF10

Framework ID QEN LC AN PSNR
DnCNN × × × × 29.19

Dual-DnCNN ✓ × × × 28.49
Deep QEN × ✓ × × 29.34

Pro-C × ✓ × ✓ 29.32
Pro-CAR w/o LC&AN ✓ ✓ × × 28.77

Pro-CAR w/o LC ✓ ✓ × ✓ 29.38
Pro-CAR w/o AN ✓ ✓ ✓ × 28.79

Pro-CAR ✓ ✓ ✓ ✓ 29.41

By comparing “Dual-DnCNN” with baseline DnCNN, we
find that although the artifacts are reduced separately, without
AN, the simple addition of two streams’ outputs cannot
well complement each other. Benefiting from the multipath
recursive residual learning that contributes to the flow of
information and the gradient, “Deep QEN” improves the
performance of the baseline. While comparing “Pro-C” with
“Deep QEN”, we find that both frameworks are composed
of a single-stream architecture; however, one consists of two
cascaded networks and the other is one deep network. Since
they have similar network depth, their performance is also
similar. To evaluate the effectiveness of LC and AN, we
conduct another three experiments by removing one or both of
them from Pro-CAR. The last four rows in Table IV show that
these new frameworks suffer from performance degradation
when removing LC or AN. When removing AN, the total
network depth decreases from 40 to 20, hence, its performance
decreases significantly. Through these quantitative analyses,
the effectiveness and benefits of our proposed ID, QEN, LC,
and AN are well demonstrated.

6) Extension on JPEG2000: JPEG2000 coding is based
on the discrete wavelet transform, which generally introduces
blurring and ringing compression artifacts. In this subsection,
the effectiveness of the proposed method in working with
JPEG2000-compressed images is tested and compared with
ARCNN, DRRN, MemNet, and ERP-CA [56] baselines. All
the DL networks are retrained on the training images that
are compressed using the JPEG2000 encoder from MATLAB
software at 0.1 bit per pixel (BPP). The involved λs and λgt

for image decomposition are 0.04 and 0.02, respectively. The
performance is presented in Table V, which is measured by the
average PSNR and SSIM over the testing set. Apparently, by
reducing the artifacts according to their characteristics (i.e., HF
or LF artifacts), the proposed framework surpasses all other
baselines. Moreover, the networks designed for deblocking or
relying on DCT domain prior may fail in this case. Therefore,
adopting the dual-stream to separately suppress the HF and
LF artifacts makes the proposed framework more robust in
solving different kinds of CAR problems.

Table V
Average PSNR(dB) and SSIM results of reducing JPEG2000 artifacts on

LIVE1 at quality 0.1 BPP.

Metrics JPEG2000 EPR-CA ARCNN DRRN MemNet Pro-CAR
PSNR 27.74 27.94 27.94 28.30 28.31 28.41
SSIM 0.7302 0.7331 0.7345 0.7459 0.7459 0.7493

7) Effectiveness of Recursive Learning: Fig. 10 shows the
comparison between QEN with and without recursive learning
when testing for the image CAR task on LIVE1 at QF 10.
Due to recursive learning, the proposed network efficiently
reduces compression artifacts while enjoying low storage and
computational complexity demands. Moreover, while training,
the recursive learning network is more stable and obtains better
results than the nonrecursive one. Referring to Fig. 10, both
versions trained from scratch achieve a better performance
than that of JPEG after the first 4 epochs, and they outperform
ARCNN after approximately 6 epochs.
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Figure 10. The comparison between the proposed network with and without
recursive learning when testing for the image CAR task on LIVE1 at QF 10.

B. Image Denoising

In this subsection, we first present the specific imple-
mentation details for the image denoising and then compare
the proposed framework for denoising with state-of-the-art
approaches on the widely used benchmark datasets. Finally,
we discuss the running time of the denoising approaches.

1) Implementation Details: In this experiment, we enhance
the image quality of distorted images suffering from AWGN
at specific noise levels, i.e., σ = 15, 25 and 50. The value of λs

for noise level 50 is determined by exhaustive search within
the range [0.0001 0.1]. Then, similar to the CAR experiments,
based on the MSE ratio between the MSE of training images
at noise level 50 and the other two levels, corresponding λs
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Table VI
Average PSNR(dB)/SSIM results of different methods for image denoising task on the BSD68 [57] dataset

Methods BM3D TNRD DnCNN-3 MemNet MWCNN IDN Pro-C Pro-DE
σ=15 31.08/0.8722 31.42/0.8826 31.46/0.8826 31.44/0.8793 31.86/0.8947 32.22/0.9006 31.54/0.8846 32.40/0.9131
σ=25 28.57/0.8017 28.92/0.8157 29.02/0.8190 29.14/0.8220 29.41/0.8360 29.92/0.8502 30.64/0.8787 31.02/0.8904
σ=50 25.62/0.6869 25.97/0.7029 26.10/0.7076 26.73/0.7397 26.53/0.7366 27.57/0.7741 28.31/0.8186 28.53/0.8229

# of Para(k) 0 0 665 677 16140 862 594 594
Runtimes(s) 1.26 1.88 — 0.54 — 0.15 0.40 0.40

values are determined. Hence, the λs values at noise level 15,
25 and 50 are 0.002, 0.005 and 0.02, respectively. In this task,
the GT images are the original noise-free images.

For fair comparison, we follow [28] and [7] that use a
dataset that consists of 91 images from [47] and 200 training
images from the Berkeley segmentation dataset BSDS500 [50]
as our training set. For validation, we adopt the BSD68 [57]
dataset containing 68 natural images, the Set 5 and the DIV2K
dataset [52]. Note that all these testing images are widely used
for the evaluation of Gaussian denoising methods, and they
are not included in the training dataset. Moreover, in this task,
data augmentation is performed as well. By adopting the same
patch size of 31×31, we extract 575,552 training image patch
pairs.

2) Quantitative Comparisons: Compared with 7 state-of-
the-art denoising methods, including BM3D [33], EPLL [58],
TNRD [31], DnCNN [7], MemNet [10], MWCNN [11] and
IDN [41], the corresponding results on dataset BSD68 are
shown in Table VI. The proposed framework for denoising
is named as “Pro-DE” in this table. From these results, the
proposed approach shows significant superiority on both PSNR
and SSIM results compared with the remaining state-of-the-
art approaches. In particular, the gain compared to that of the
second best approach reaches 0.18 dB, 0.38 dB, and 0.96 dB
at σ= 15, σ= 25 and σ= 50, respectively. According to [61],
few methods can outperform BM3D by more than 0.3 dB
on average. In contrast, the proposed approach outperforms
BM3D by 2.23 dB on average for the three noise levels.
Improved SSIM performance can also be observed. This
comparison demonstrates that it is beneficial to reduce the
artifacts based on their characteristics.

Table VII
Average PSNR(dB) and SSIM results of different methods for image

denoising task on the DIV2K [52] dataset

Methods
σ=15 σ=25 σ=50

PSNR SSIM PSNR SSIM PSNR SSIM
EPLL 33.44 0.9036 31.04 0.8531 27.82 0.7540

DnCNN-3 33.45 0.9042 31.04 0.8592 27.89 0.7702
MemNet 33.72 0.9009 30.52 0.8340 27.50 0.7471

IDN 33.46 0.8976 30.36 0.8280 27.01 0.7499
Pro-C 33.88 0.9088 31.33 0.8574 28.16 0.7887

Pro-DE 34.25 0.9224 31.84 0.8804 28.76 0.7949

Table VII lists the average PSNR and SSIM results for the
different methods when applied on DIV2K dataset. It can be
seen that even on such a challenging dataset the proposed
approach can still maintain its advantages over the other state-
of-the-art methods at all noise levels. To be specific, the
proposed Pro-DE exceeds the second best method by 0.37 dB,
0.51 dB and 0.60 dB at σ= 15, σ= 25 and σ= 50, respectively.
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Figure 11. Denoising PSNR results on each image in Set5 with noise level
(a) 25 and (b) 50.

The performance comparison on each image in the Set5 [62]
dataset at noise level 25 and 50 is shown in Fig. 11. It is clear
that the proposed approach has superior performance over the
other approaches on each image.

3) Qualitative Comparisons: Fig. 12 shows two visual
quality comparisons for the test images “pepper” and “parrot”
at noise level 25 and 50, respectively. In general, BM3D
is prone to oversmooth the images, and this becomes more
obvious when the noise level increases. During the learning
process, TNRD and DnCNN try to preserve sharp edges and
fine details; however, they are likely to generate artifacts in
the smooth region (see the “parrot” image). In contrast, the
proposed approach, even at noise level 50, can still recover
the fine details while removing noise.

4) Running Time: In this subsection, the running time of
BM3D and TNRD are evaluated on the same PC as previously.
We run each algorithm 5 times for noise level σ=15 and report
the average execution time in Table VI. As a learning-based
method, since TNRD is implemented in a parallel computing
way, it costs little time. In contrast, benefiting from weights
sharing, our Pro-DE reconstructs noise-free images at a fast
speed.

C. Image Super-resolution

In this subsection, we first present the specific imple-
mentation details for the image SR task and then compare
the proposed framework for image SR with state-of-the-art
approaches on the widely used benchmark datasets.

1) Implementation Details: In this task, the image decom-
position module is not employed in the framework; therefore,
no parameter selection is required. To train the network, we
follow [28] and [7] and adopt the same training dataset as used
for the denoising task. For validation, we adopt the widely
used datasets BSDS500 [50], Urban100 [63] and DIV2K
[52]. We employ the same data augmentation as before.
Consequently, with a patch size of 31×31, we extract 575,552
training image patch pairs. Similar to [5], we first downsample
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Noisy pepper at σ25 20.22/0.3707 BM3D 30.16/0.8700 TNRD 30.57/0.8754 DnCNN-3 30.55/0.8770 Pro-DE 30.85/0.8872

Noisy parrot at σ50 14.12/0.1923 BM3D 25.90/0.7868 TNRD 24.98/0.7636 DnCNN-3 26.37/0.7838 Pro-DE 26.53/0.7940

Figure 12. Denoising visual quality comparison for images “pepper” at σ=25 and “parrot” at σ=50. The corresponding PSNR(dB) and SSIM results are
listed below the images. This figure is best viewed on screen.

Table VIII
Average PSNR(dB)/SSIM results of different methods for image SR task on three commonly used large-scale datasets

Dataset Upscale Bicubic SRCNN VDSR DnCNN-3 ARN MemNet MWCNN IDN Pro-SR

BSDS500
2 29.10/0.8267 30.14/0.8610 31.89/0.8961 31.90/0.8961 30.44/0.8624 32.08/0.8978 32.23/0.8999 32.08/0.8985 32.03/0.8980
3 27.01/0.7308 27.92/0.7700 28.82/0.7980 28.85/0.7981 28.02/0.7732 28.96/0.8001 29.12/0.8060 28.95/0.8013 28.87/0.7993
4 25.82/0.6625 26.53/0.6957 27.28/0.7256 27.29/0.7253 26.69/0.7036 27.40/0.7281 27.62/0.7355 27.41/0.7297 27.33/0.7274

Urban100
2 26.52/0.8242 28.20/0.8655 30.76/0.9143 30.74/0.9139 28.60/0.8750 31.31/0.9195 32.30/0.9296 31.27/0.9196 30.70/0.9200
3 24.30/0.7258 25.57/0.7756 27.13/0.8283 27.15/0.8276 25.85/0.7898 27.56/0.8376 28.13/0.8514 27.42/0.8359 26.56/0.8185
4 23.03/0.6509 23.98/0.6965 25.17/0.7528 25.20/0.7521 24.24/0.7128 25.50/0.7630 26.27/0.7890 25.41/0.7632 25.22/0.7546

DIV2K
2 32.43/0.9041 34.40/0.9315 33.43/0.9250 35.42/0.9400 —/— 35.62/0.9416 —/— 35.00/0.9308 35.61/0.9410
3 29.65/0.86306 30.95/0.8616 30.77/0.8612 31.78/0.8799 —/— 31.93/0.8799 —/— 31.92/0.8728 32.19/0.8818
4 28.11/0.7748 29.10/0.8030 29.08/0.8041 29.84/0.8231 —/— 29.97/0.8268 —/— 29.90/0.8111 30.11/0.8290

# of Para(k) — 8 665 665 1145 677 16140 862 594
Runtimes(s) — 3.21 0.34 — — 0.56 — 0.22 0.40

each image in the training set by using the bicubic algorithm
of MATLAB with scale factors of 2, 3 and 4. Then, we train
the models respectively for different scale factors.

2) Quantitative Comparisons: In this subsection, bicubic
upsampling is used as the basic benchmark and we compare
the performance of the proposed Pro-SR with another 8
learning-based approaches: SRCNN [5], TNRD [31], VDSR
[28], DnCNN [7], ARN [9], MemNet [10], MWCNN [11] and
IDN [41] on datasets Set5 [62], Set14 [51], BSDS500 [50]
and Urban100 [63]. The BSDS500 dataset consists of natural
scenes, and the Urban100 set contains challenging images of
urban scenes with significant texture details. It is sufficient to
indicate the performance of these approaches by evaluating
them on these commonly used datasets. The corresponding
PSNR and SSIM results are reported in Table VIII. The
proposed framework outperforms existing methods SRCNN,
TNRD, VDSR, DnCNN, and ARN in most cases. On the
BSDS500 dataset, the proposed framework outperforms the
well-known network DnCNN, with the improvement margin
of 0.13 dB, 0.02 dB, and 0.04 dB on scale factors 2, 3
and 4, respectively. Even with fewer training parameters,
the proposed framework can still achieve very competitive
results compared to those of the best network on the difficult
Urban100 dataset.

3) Qualitative Comparisons: The qualitative comparisons
of image “ppt3” at scale factor 3 and image “Urban068” at
scale factor 4 are provided in Fig. 13. At scale 3, the capability
of SRCNN and VDSR to suppress the LF blurring artifacts is
inadequate, i.e., the edges remain blurred. DnCNN performs
well at small scale factors but cannot fully recover sharp edges
at large scale factors. The proposed framework produces the
best visual quality with fewer unpleasant artifacts and sharper
reconstructed edges, even at the large scale factor.

4) Running Time: In this subsection, the running time of
each method in Table VIII is obtained by testing on BSDS500
at scale 2. Since the source code provided by SRCNN
implements the testing process in the CPU, the running time is
longer than other methods while employing a shallow network
depth. Comprehensively comparing Pro-SR with the state-
of-the-art methods from the performance, memory cost and
running time perspectives, the proposed framework achieves a
better tradeoff situation.

D. Framework Convergence
In this subsection, we examine the convergence characteris-

tic of the proposed framework on three IR tasks by evaluating
the PSNR evolution in the epochs. The PSNR evolutions of
the corresponding datasets on three IR tasks versus the number
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Bicubic 23.57/0.8678 SRCNN 26.07/0.9173 VDSR 26.41/0.9344 DnCNN 28.20/0.9604 Pro-SR 28.49/0.9663

Bicubic 25.42/0.6721 SRCNN 26.70/0.7428 VDSR 26.83/0.7505 DnCNN 27.42/0.7741 Pro-SR 27.69/0.7938

Figure 13. Image SR visual quality comparison for images “ppt3” from Set14 [51] and “Urban068” from [63] at scale factors 3 and 4, respectively. The
corresponding PSNR(dB) and SSIM results are listed below the images. This figure is best viewed on screen.
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Figure 14. The convergence characteristic of the proposed frameworks for different tasks.

of epochs are shown in Fig. 14. At the early training stage, all
the curves monotonically increase in general, which provides
an indication of the effectiveness of the proposed frameworks.
As the epoch number increases, all the curves converge to a
certain level. It appears that 10 epochs are sufficient to achieve
convergence.

V. CONCLUSION

In this work, we propose a flexible deep CNN framework for
image restoration, which exploits the frequency characteristics
of different types of artifacts. For specific IR tasks, the artifacts
are first decomposed into a high-frequency or low-frequency
group based on their characteristics. Then, according to the
decomposition outcomes, the proposed framework can be
efficiently adjusted to suppress these artifacts separately by
the proposed quality enhancement network. In the proposed
network, the multipath design helps the gradient flow and
the transmission of the low-level features. Residual learning
eases the training process. Recursive learning allows reducing
the number of training parameters. In this way, the proposed
flexible framework can significantly handle different artifacts
while requiring fewer training parameters and less running
time than the state-of-the-art approaches. Our future work

will address an extension of the proposed framework from
the quality enhancement of still images to video sequences by
exploring the temporal relations.
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