2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)

A Fuzzy Framework for Semantic Web Service
Description, Matchmaking, Ranking and Selection

Ehsan Sharifi, Reza A. Moghadam
Dpt. of Computer Science
Payam noor University, Tehran, Iran
ehsasha@gmail.com, askari@pnu.ac.ir

Abstract—Semantic Web Services (SWSs) provide a semantic
representation of web services that provides a well-defined seman-
tics in order to make them computer-interpretable, use-apparent,
and agent-ready. In the last years it is becoming more and more
accepted the idea that current Semantic Web technologies are
not appropriate to deal with imprecise and vague knowledge,
inherent to several real world domains.

This paper proposes a fuzzy logic-based framework that makes
service description, discovery and selection more flexible, and that
includes support for non-functional properties. In particular, we
extend OWL-S services by including a fuzzy domain ontology,
which improves the definition of functional properties, and a
fuzzy Quality of Service ontology, which improves the definition
of non-functional properties. We also show how to enhance the
tasks of SWS selection and ranking by means of fuzzy reasoning.

I. INTRODUCTION

A web service is a software system which allows to ac-
cess to a remote application through standard Web protocols.
A major limitation of the Web services technology is that
discovering and composing services requires a lot of manual
effort. To solve this problem, some researchers proposed to
extend Web services with ideas from the Semantic Web [2],
an extension of the web to give information a well-defined
meaning, enabling automatic information processing.

The extension of Web services with a semantic description
of their functionality is referred to as Semantic Web Services
(SWSs) [6]. SWSs allow software agents to automatically
discover, invoke and compose services. With information de-
scribed semantically, a service broker could satisfy a complex
user request by searching a services registry, matching the most
suitable service (or services) and, if necessary, composing the
individual results to perform the full task.

SWS descriptions rely on two kinds of ontologies. Firstly,
a generic ontology specifies the main aspects of the service re-
gardless of the application domain. OWL-S [21] is a language
for SWS representation, being actually an OWL ontology to
annotate Web Services for adding semantic information. Sec-
ondly, a domain ontology provides specific knowledge about
the domain of the service. Domain knowledge is represented
in an OWL or OWL 2 ontology [10], [20].

Due to the increasing number of services offering similar
functionalities, non-functional properties (NFPs) have become
essential criteria to enhance the processes of service selection.
Thus, a service description usually includes functional proper-
ties and non-functional properties.

978-1-61284-181-6/11/$26.00 ©2011 IEEE

Fernando Bobillo
Dpt. of Computer Science and S.E.
University of Zaragoza, Spain
fbobillo@unizar.es

Mohamad M. Ebadzadeh
Dpt. of Computer Science
Amirkabir University of Technology
Tehran, Iran, ebadzadeh @aut.ac.ir

Current approaches often use Quality of Service (QoS) to
filter the SWSs discovery results based on user constraints of
QoS descriptions [22], as services with equivalent functionality
can be provided by different service providers with substan-
tially different values of QoS. Nevertheless, different service
providers and requesters may use different QoS concepts
for describing service quality information, which leads to
the issue of semantic interoperability of QoS. The solution
is using a QoS ontology that supports not only describing
QoS information in great detail but also facilitating various
service participants expressing their QoS offers and demands at
different levels of expectation [19]. During the last years, a lot
of effort has been deployed to enhance current frameworks to
describe NFP properties. For example, several QoS ontologies
have been proposed [12], [14], [1], [19].

Today it is widely agreed that classical ontologies are not
suitable to represent vague and imprecise knowledge that the
humans are very used to, such as the notions of cheap or small.
In particular, the values of some non-functional properties of
services, such as some QoS properties, cannot be properly
described with crisp ontologies. In other words, because of the
imprecise nature of the values of this properties, users cannot
describe their request properly.

As a solution, fuzzy ontologies [17] have been proposed as
a combination of ontologies with techniques from fuzzy set
theory and fuzzy logic [23]. Essentially, in fuzzy ontologies
fuzzy concepts denote fuzzy sets of individuals, whereas fuzzy
roles denote fuzzy binary relations among individuals. Axioms
are also extended to the fuzzy case and, consequently, it
is possible to add an upper bound or a lower bound to
some axioms. For instance, it is possible to represent fuzzy
concepts inclusions, such as “fuzzyConcept1 is a subconcept
of fuzzyConcept2 with at least degree 0.5”.

The main objective of our research is to enhance SWSs by
considering fuzzy SWS, where fuzzy ontologies are used rather
than classical ontologies. More precisely, we use OWL-S as
the SWS description language and extend both the functional
and non-functional aspect of our new semantic web service
framework with fuzzy ontologies. Then, we show how to
enhance the tasks of SWS selection and ranking by means
of fuzzy reasoning. As an additional contribution, we propose
a framework for fuzzy ontology generation as a considerable
extension of our previous work in [7]. This framework is used

<©IEEE

to generate the fuzzy domain ontologies for the fuzzy SWS,
but can be used in another different frameworks.

The remainder of this work is organized as follows. Sec-
tion II proposes a framework for fuzzy ontology generation.
Then, Section III describes our architecture for fuzzy SWSs
management. Next, Section IV describes the experimental
evaluation of our approach. Finally, Section V sets out some
conclusions and ideas for future research.

II. A FRAMEWORK FOR FUZZY ONTOLOGY GENERATION

In this section we address the problem of obtaining the
fuzzy domain ontology. We have separated this framework
from the architecture in the next section because it could be
used outside fuzzy SWSs. Here, we extend and refine our
previous work in [7], which is inspired by [15]. Our framework
(depicted in Figure 2) comprises several steps:

LBl

ST
e

™

Web Wikiﬁedia OWL Ontologies ~ Experts
| A | ‘
(¥ vvy h
Corpus Collection Domain Vocabulary
{Web Crawler) - Generation
l / o
B rC didate C
q _ andidate Concept
Document Parsing Extraction
/ -

y

Fuzzy Context Vector

~
Concept Prurning and
Filtering

Y R

Generation I
Fuzzy Axiom Fuzzy Taxonomy -
Generation Creation and Prurning

Fuzzy Domain Ontology

Fig. 1. Framework for fuzzy ontology generation.

a) Domain vocabulary generation: In this first step,
we gather the domain vocabulary from multiple sources. The
output of this step is an initial set of concepts and terms related
to the application domain. These sources include experts
knowledge, existing ontologies and Wikipedia'. The impor-
tant feature of the selected information is the diversity. We can
find appropriate ontologies by using a semantic search engine,

Uhttp://www.wikipedia.org

as Swoogle?. Wikipedia is a specially important source of
vocabulary due to its collaborative development. Finally, the
experts can revise and extend the domain vocabulary.

b) Corpus collection by web crawler: We use the
vocabulary generated at the previous step to collect a corpus
of related web documents that are relevant for the domain. We
use JWPL API to collect relevant web pages from Wikipedia,
and by using a web crawler to retrieve relevant web pages from
the Internet. Note that we use Wikipedia again, but this step
produces documents instead of vocabulary. As usual, one has
to find hubs that are suitable as starting points for the search
process. Good hubs correspond to web pages that are linked
by many web pages that are related to the domain. Note that
this step is an enhancement with respect to [7].

¢) Document parsing: Our corpus is converted into text
format with WP2Text? tool. This step comprises three main
parts [16]: (i) stop word removal, (ii) part-of-speech tagging,
and (iii) word stemming.

d) Candidate concept extraction: A term consists of
one or more words. A term is a candidate to become a concept
if it carries recognizable meaning with respect to a context.
Extracting concepts from our text corpus requires 3 steps: (i)
basic preprocessing, (ii) pattern filtering, and (iii) computing
statistical data between corpus terms.

e) Fuzzy context vector generation: In the field of
information retrieval, context vectors have been proposed for
concept representation [18]. In this step, we generate a fuzzy
context vector for each candidate concept. We compute the
degree of relatedness between terms and concepts by any of
the measures discussed in [15]: BMI, JA, CP, KL, or ECH.

f) Concept pruning and concept filtering: This step
is another enhancement with respect to [7]. We prune the
concepts that have terms with membership degree below a
specified threshold (obtained empirically after several exper-
iments in [15]). Next, we eliminate concepts that have a high
frequency in the domain but also in other domains. To this
end, we compute the relevance score of a concept to a domain,
because if a concept is significant for a particular domain, it
will appear with a higher frequency than in other domains.
Finally, experts can revise and modify the final list of concepts.

g) Fuzzy taxonomy creation and pruning: This step
consists on discovering fuzzy subsumption relations among
concepts. We compute the subsumption degree between two
concepts based on their structural similarity [15]. When the
taxonomy is built, we prune the subsumption relations below
some threshold (again, obtained empirically in [15]).

h) Fuzzy axiom generation: Finally, the fuzzy context
vector and the fuzzy taxonomy are used to obtain fuzzy
concept inclusions. In particular, we use the syntax in [9].
Fuzzy assertions could also be obtained from fuzzy context
vectors as in [7], but we will not consider them as they are
not necessary for our fuzzy SWS framework. At this point,
experts can complete the fuzzy ontology with new knowledge
that could not be automatically generated in the previous steps.

Zhttp://swoogle.umbc.edu
3http://wp2txt.rubyforge.org

622

I Y

QoS Ontologies

Fuzzy Domain Ontologies

) |
..f 1

(Fuzzy owLz reprassntaﬁon]

-Knowledge Layer

& Translation
into OWL2

o
00
000
OWL2 Domain
Ontologies

A

4

Ranked Web Services

|$ Fuzzy SWS selection

3

QoS Requirement and QoS Offer

SWS Repository

Matched Web Services

\ Broker Domain Fuzzy KB
—————* |nleracls e B = Refers P ses
Fig. 2. Architecture for Fuzzy OWL-S.

III. AN ARCHITECTURE FOR Fuzzy SWS MANAGEMENT

This section describes our architecture for fuzzy SWS
Description, Discovery and Selection (depicted in Figure 2).
The main idea of the architecture is that, instead of using
a traditional OWL-S upper ontology, we use multiple fuzzy
ontologies. Both the service provider and requester can use
fuzzy ontologies for the advertisement and the request. Fuzzy
ontologies provide a more expressive description of functional
and non-functional properties of SWSs.

There are several differences with our previous work [7]: we
distinguish between functional and non-functional properties,
we consider a tool for fuzzy ontology representation, and we
deal with the tasks of fuzzy SWS matchmaking and selection.

On the one hand, functional aspects of a SWS (such as
inputs and outputs) are described by means of fuzzy domain

ontologies, which are built by using the framework described
in Section II. On the other hand, non functional properties
are described by means of fuzzy QoS ontologies. The benefit
of these properties is that they allow more advanced service
discovery and selection, although they require an extended
service description and some way to use this new information
to select the services. Such fuzzy ontologies are built by
annotating existing ontologies. The framework in Section II
is not used because of the different structure of the ontology.

For the moment, we are considering just one fuzzy QoS
ontology, which is a fuzzy extension of the QoS ontology
in [12], which integrates the Amigo ontology and the OWL-Q
ontology [14], [1]. The Profile of OWL-S is linked to the QoS
ontology parameters by using the property ServiceParameter
and the QOS concept. Then, we provide a more powerful
system to define quality properties values by using fuzzy

623

datatypes. For instance, while the property Reliability is orig-
inally defined as < 50 (lessthanorequal50), we can define
them by using a fuzzy left-shoulder membership function.

It is important to stress that we use two different fuzzy
ontology reasoners: DeLorean [4] and fuzzyDL [8]. The
reason is that they offer different features: DeLorean com-
putes non-fuzzy OWL 2 ontologies, equivalent to the fuzzy
ontologies [5], whereas fuzzyDL supports different logical
operators that make it more appropriate for matchmaking [8].

Our architecture involves the following steps:

a) Representation of fuzzy ontologies with fuzzy
OWL 2: We use Fuzzy OWL 2 Protégé plug-in* to represent
fuzzy QoS ontologies. The idea of the plug-in is to extend the
elements of OWL 2 with annotation properties that represent
the features of the fuzzy ontology that OWL 2 cannot directly
encode. For further details, the interested reader is referred
to [9]. Hence, this step receives as input some QoS ontologies
and provide as output fuzzy QoS ontologies.

b) Translation of fuzzy OWL 2 into equivalent OWL
2 ontologies: As already noted, DeLorean reasoner is able to
transform a fuzzy ontology into an equivalent OWL 2 ontology.
In this step, we can translate some of the fuzzy ontologies
into equivalent OWL 2 ontologies. The reason is that we can
use for traditional (non-fuzzy) SWS advertisement and request.
However, this is not a mandatory step, as the provider and the
user could directly use the fuzzy ontologies.

c) Fuzzy SWS advertisement: Providers can describe
their services by using fuzzy OWL-S. The functional properties
are semantically described by using a fuzzy domain ontology
(or an equivalent non-fuzzy ontology), whereas the NFPs are
described by fuzzy QoS ontologies (or the equivalent non-
fuzzy ontologies). Providers can register their advertisements
in a SWS repository, which is a central and UDDI (Universal
Description, Discovery and Integration) based database.

d) Fuzzy SWS request: Users can describe their re-
quests in a more flexible manner with fuzzy OWL-S. The idea
behind this step is the same as in the previous one.

e) Fuzzy SWS matchmaking: This step requires three
previous steps: (i) translating fuzzy OWL-S functional prop-
erties into fuzzy multisets (using a fuzzy OWL-S parser), (ii)
fuzzy multiset data matrix building, and (iii) fuzzy clustering
based on the algorithm of the Fuzzy C-Means (FCM) [3]. We
use a modified version of the SWS matchmaking algorithm
proposed in [11], which takes as input a collection of fuzzy
multisets (representing the information enclosed in OWL-S
SWS descriptions) and a user request based on the functional
description of the SWS, and returns a list of matched services,
such that their advertisement produced a matching higher
than given that a certain threshold. The difference is that we
consider the representation in the fuzzy OWL-S descriptions.

f) Fuzzy SWS selection: In this last step, we (i)
model NFPs (QoS properties) of the matched SWSs as fuzzy
ontological axioms, (i) rank the advertisements, according to
their degree of satisfaction of the requests, by using a fuzzy

“http://www.straccia.info/software/Fuzzy OWL/

ontology reasoner, and (ii7) select the best one. More precisely,
we use fuzzyDL reasoner and encode this task in similar way
as the fuzzy matchmaking example in [8].

IV. EVALUATION

This section describes our experiments for evaluating our
approach from an empirical point of view. Our approach has
been tested on the test collections created for OWLS-MX [13],
an hybrid matchmaker that complements logic based reasoning
with approximate matching based on syntactic information
retrieval-based similarity measures.

The contribution of this section is two-fold. On the one
hand, we generate a fuzzy domain ontology, using the frame-
work described in Section II, that we use for the semantic
description of the functional properties. On the other hand, we
replace the functional properties of the test collections with
fuzzy properties from the fuzzy domain ontology, and we add
fuzzy non-functional properties from fuzzy QoS ontologies.

In the following we describe further implementation details,
the test case and the experimental results.

a) Implementation.: Our prototype for fuzzy domain
ontology generation is implemented in Java. It uses several
external libraries, namely the Stanford NLP parsers, Part-
Of-Speech (POS) tagger®, JWPL’, and OWL-S API 1.18.
JWPL (Java-based WikiPedia Library) is a Java-based appli-
cation programming interface that allows to access Wikipedia.
OWL-S API provides a programmatic access to OWL-S ser-
vice descriptions for extending non-functional properties with
respect to fuzzy QoS ontologies.

Our fuzzy matchmaking algorithm has been implemented
in Matlab. We also use the Fuzzy OWL 2 Protégé plug-in
for fuzzy ontology representation (in OWL 2 with annotations)
and the fuzzy DL reasoners DelLorean (to translate fuzzy
ontologies) and fuzzyDL (for fuzzy SWS fuzzy selection).

b) Test case.: We have chosen the travel domain for
our experiments. The first step was to generate a fuzzy domain
ontology. To this end, we collected a corpus. For simplicity, it
was simply based on Wikipedia, by collecting all the pages and
subcategories related to the travel domain. Our corpus contains
almost 500 pages. The travel ontology in the OWL-S Service
Retrieval Test Collection (OWL-TC)® was used for the domain
vocabulary generation part of our framework. As a result, our
fuzzy domain ontology contains a fuzzy taxonomy between
the concepts in the travel domain.

Then, we randomly selected some SWS advertisements
in the test collection and replaced their concepts with fuzzy
concepts from the fuzzy ontology.

We also added some non-functional properties (such as
QoS). We developed a fuzzy extension of the Qos ontology
in [12], by providing some annotations to describe the values
of some properties by means of fuzzy datatypes.

Shttp://nlp.stanford.edu/software/lex-parser.shtml
Shttp://nlp.stanford.edu/software/tagger.shtml
"http://code.google.com/p/jwpl
8http://on.cs.unibas.ch/owls-api
9http://projects.semwebcentral.org/projects/owls-tc/

624

c) Experiments.: To evaluate our fuzzy SWS descrip-
tion framework we compared the retrieval performance of the
fuzzy SWS matchmaking based on our fuzzy extension of
OWL-S with the fuzzy matchmaking algorithm in [11] in one
particular case (two service requests).

Our system is evaluated in terms of precision and recall
measures. We consider the evaluation of micro-average of the
individual precision-recall curves, using a number A = 20 of
steps up to reach the highest recall value [11]. The micro-
averaging of recall and precision (at step A) are defined as
Recyx = > p|Dr N Byrl|/|D| and Precy = Y p|Dr N
By r|/|Bx|, respectively, where Dp is the answer set of
relevant service advertisements for a given request R, B is
the set of retrieved OWL-S descriptions at the step A and B r
is the set of all relevant OWL-S descriptions at step .

Average RecalliPrecision

Precision
o
o

0 01 02 03 04 05 06 o7 08 09 1
Recall

‘ ——OWL-G fuzzy discovery —i—Fuzzy OWL-S fuzzy discovery ‘

Fig. 3. Comparison of precision/recall with hybrid OWL-S approach.

We computed precision and recall of two small variants
of two service requests from OWL-TC (citycountry-hotel-
service and title-comedyfilm-service), modified to use fuzzy
concepts from our fuzzy ontologies. As shown in Figure 3,
both approaches show comparable results, but in this case our
matchmaking using fuzzy ontologies produces a slightly better
performance. The execution time is the same as the algorithm
is the same (we only change the input matrix). Additionally,
our approach allows to use NFPs to rank the services in a
fuzzy SWS selection step.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a fuzzy framework for SWS description,
discovery and selection. The purpose of this research is to
expand the scope of the existing descriptions of Web services,
enabling them to describe uncertain knowledge, and to pro-
vide an integrated solution for fuzzy description-based service
organization and matching.

In particular, we extend the semantic description of the
functional properties of SWSs by using a fuzzy domain
ontology. We also enhance the semantic description of the
non-functional properties by using fuzzy Quality of Service
ontologies. Non-functional properties play an important role in
Web service selection in order to evaluate and rank candidate

SWSs, so extending them by using fuzzy ontologies produces
a more powerful formalism for SWS description.

Up to now, we have shown that our approach may perform
better in some cases. Future work will include a more rigorous
evaluation of the fuzzy SWS selection, modifying more SWS
in the OWL-S Service Retrieval Test Collection with fuzzy
ontologies and non-functional properties.

REFERENCES

[1] Amigo Project. Amigo middleware core: Prototype implementation and
documentation. Deliverable D3.2, 2006. http://www.hitech-projects.com/
euprojects/amigo/deliverables/amigo-d3.2-final.pdf.

[2] T. Berners-Lee, J. Hendler and O. Lassila. The semantic web. Scientific
American, 284(5):34-43, 2001.

[3] J. C. Bezdek. Pattern recognition and fuzzy objective function algo-
rithms. Plenum Press, 1981.

[4] F. Bobillo, M. Delgado and J. Gémez-Romero. DeLorean: A reasoner
for fuzzy OWL 1.1. In Proceedings of the 4th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW 2008), vol. 423.
of CEUR Workshop Proceedings, 2008.

[5] F. Bobillo, M. Delgado and J. Gémez-Romero. Crisp representations
and reasoning for fuzzy ontologies. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 17(4):501-530, 2009.

[6] F. Bobillo, J. Gémez-Romero and R. Pérez-Pérez. Semantic web
services: A brief overview. In Proceedings of the IADIS International
Conference WWW/Internet 2005, pp. 1-8, 2005.

[7]1 F. Bobillo, E. Sharifi, M. M.. Ebadzadeh and R. A. Moghadam. On fuzzy
semantic web services. In Proceedings of the 19th IEEE Int. Conference
on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2418-2423, 2010.

[8] F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description
logic reasoner. In Proceedings of the 17th IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923-930. 2008.

[9] F. Bobillo and U. Straccia. Representing fuzzy ontologies in OWL 2.
In Proceedings of the 19th IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2010), pp. 2695-2700, 2010.

[10] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider
and U. Sattler. OWL 2: The next step for OWL. Journal of Web
Semantics, 6(4):309-322, 2008.

[11] G. Fenza, V. Loia and S. Senatore. A hybrid approach to semantic web
services matchmaking. International Journal of Approximate Reasoning
48(3):808-828, 2008.

[12] Hydra project. Quality-of-Service enabled Hydra middleware. Deliv-
erable D4.10, 2009. http://www.hydramiddleware.eu/hydra_documents/
D4.10_QoS_Enabled_Hydra_Middleware.pdf.

[13] M. Khalid, K. Sycara, M. Klusch and B. Fries. OWLS-MX: Hybrid
semantic web service retrieval. In Proc. of the st Int. AAAI Fall
Symposium on Agents and the Semantic Web, AAAI Press, 2005.

[14] K. Kritikos and D. Plexousakis. Semantic QoS-based web service
discovery algorithms. In Proceedings of the 5th European Conference
on Web Services (ECOWS 2007), IEEE Computer Society, 2007.

[15] R. Y. K. Lau. Fuzzy domain ontology discovery for business knowledge
management. Intelligent Informatics Bulletin, 8(1):29-41, 2007.

[16] R. Y. K. Lau. Towards a fuzzy domain ontology extraction method
for adaptive e-learning. IEEE Transactions on Knowledge and Data
Engineering, 21(6):800-813, 2009.

[17] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness
in description logics for the semantic web. Journal of Web Semantics,
6(4):291-308, 2008.

[18] H. Schiitze. Automatic word sense discrimination
Linguistics 24(1):97-124, 1998.

[19] V. X. Tran, H. T. and Ryosuke Masuda. A new QoS ontology and its
QoS-based ranking algorithm for Web services. International Journalof
Simulation Modelling Practice and Theory 17(8):1378-1398, 2009.

[20] W3C. OWL Web Ontology Language overview, 2004. http://www.w3.
org/TR/owl-features/.

[21] W3C. OWL-S: Semantic markup for web services, 2004. http://www.
w3.org/Submission/OWL-S.

[22] B. Yin, H. Yang, P. Fu and X. Chen. A semantic web services discovery
algorithm based on QoS ontology. In Proceedings of the 6th International
Conference on Active Media Technology (AMT 2010), Lecture Notes
in Computer Science 6335, pp.166-173, 2010.

[23] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

Computational

625

