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Abstract—Automatic image segmentation is an essential step
for many medical image analysis applications, include computer-
aided radiation therapy, disease diagnosis and treatment effect
evaluation. One of the major challenges for this task is the
blurry nature of medical images (e.g., CT, MR, and microscopic
images), which can often result in low-contrast and vanishing
boundaries. With the recent advances in convolutional neural
networks, vast improvements have been made for image seg-
mentation, mainly based on the skip-connection-linked encoder-
decoder deep architectures. However, in many applications (with
adjacent targets in blurry images), these models often fail to
accurately locate complex boundaries and properly segment tiny
isolated parts. In this paper, we aim to provide a method
for blurry medical image segmentation and argue that skip
connections are not enough to help accurately locate indistinct
boundaries. Accordingly, we propose a novel high-resolution
multi-scale encoder-decoder network (HMEDN), in which multi-
scale dense connections are introduced for the encoder-decoder
structure to finely exploit comprehensive semantic information.
Besides skip connections, extra deeply-supervised high-resolution
pathways (comprised of densely connected dilated convolutions)
are integrated to collect high-resolution semantic information for
accurate boundary localization. These pathways are paired with
a difficulty-guided cross-entropy loss function and a contour
regression task to enhance the quality of boundary detection.
Extensive experiments on a pelvic CT image dataset, a multi-
modal brain tumor dataset, and a cell segmentation dataset show
the effectiveness of our method for 2D/3D semantic segmentation
and 2D instance segmentation, respectively. Our experimental
results also show that besides increasing the network complexity,
raising the resolution of semantic feature maps can largely affect
the overall model performance. For different tasks, finding a
balance between these two factors can further improve the
performance of the corresponding network.

I. INTRODUCTION

MEDICAL image analysis develops methods for solving
problems pertaining to medical images and their use

for clinical care. Among these methods and applications,
automatic image segmentation plays an important role in
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Fig. 1: Illustration of the blurry and vanishing boundaries
within pelvic CT images. First row: intensity images; Second
row: corresponding segmentation ground-truth.

therapy planning [1], disease diagnose [2–4], and pathology
learning [5] strategies. For example, in image-guided disease
diagnose for brain cancer, accurately segmented masks of
sub-components of a brain tumor enables the physicians to
estimate the volume of gliomas (of different grade), and
then conduct progression monitoring, radiotherapy planning,
outcome assessment, and follow-up studies [5].

The primary challenges for medical image segmentation
mainly lie in three aspects. For the ease of understanding,
pelvic CT images are selected as an example for illustration,
similar conditions also exist in many other segmentation tasks,
including brain tumor and cell segmentation. (1) Complex
boundary interactions: The main target organs of pelvic CT
image segmentation are the three adjacent soft tissues, i.e.,
prostate, bladder, and rectum. Since these organs are adjacent
to each other and their shapes and scales can be changed easily
and significantly by different amounts of urine or bowel gas
inside the organs, the boundary interaction of these organs
can be complicated. (2) Large appearance variation: The
appearance of main pelvic organs may change dramatically for
the cases with or without bowel gas, contrast agents, fiducial
markers, and metal implants. (3) Low tissue contrast: CT
images, especially those from the pelvic area, have blurry and
vanishing boundaries (see Fig. 1). This last challenge poses the
most severe problem for image segmentation algorithms, as
compared with the natural or MR images, CT images visibly
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lack rich and stable texture information (especially on soft
tissues). The blurry or even vanishing edges caused by low-
and noisy-contrast acquisition of the image makes the actual
boundaries of organs easily contaminated or even partially
concealed by a large number of artifacts. As a consequence, a
holistic organ can be accidentally split into isolated parts with
various sizes and shapes (i.e., shown by the first sample in
Fig. 1), while the independent organs can be visually merged
as a whole (i.e., shown by the second sample in Fig.1). The
remaining clues for the correct location of boundaries can be
trivial and vulnerable (see Fig. 1).

In recent years, considerable improvement has been made to
boost the performance of low-contrast medical image segmen-
tation [2, 3, 6] using deep learning-based algorithms. Com-
pared to the traditional shallow learning-based algorithms, this
overwhelming performance gain owes to end-to-end learning
mechanisms [3, 7–9]. A common feature in almost all state-
of-the-art methods is the encoder-decoder architecture with
skip connections. In this structure, downsampling operations
together with convolution are utilized to extract robust high-
level semantic information, while skip connections are utilized
to pass the low-level texture and location information. Al-
though the effectiveness of this structure has been illustrated in
many applications, in this paper, we argue that, in the images
with blurry or vanishing boundaries, standard encoder-decoder
models fail due to two main reasons: (1) Skip connections
may fail in preserving the correct location information of
blurry boundaries. Different from the high-contrast images,
the blurry or missing boundaries resulted by various types
of artifacts in medical images make it hard or even impos-
sible for the shallow layers with little context information
to delineate the organ boundaries, leaving many nearby fake
boundaries (see Sample1 in Fig. 1). (2) In the encoder-decoder
pathway, because of the included downsampling operations,
important location information is gradually lost to exchange
for the invariance property. As a result, the space discriminant
capacity of the pathway, which is vital in finding the right
boundary among the fake ones, becomes unreliable. To solve
this problem, [8, 10, 11] proposed to extract high-resolution
semantic information that is accurate in location and rich in
contextual information. Although preferable improvement has
been achieved, comparing to the encoder-decoder networks,
the high memory cost of these models still limits the perfor-
mance of these algorithms.

In this paper, we propose a novel high-resolution dense
encoder-decoder network for low-contrast medical image seg-
mentation. The design of our network is mainly based on the
idea of utilizing deeply-supervised high-resolution semantic
information to compensate for the deficiency on inaccurate
boundary detection of the existing encoder-decoder networks.
To this end, we construct our network with three kinds of
pathways: 1) skip pathways; 2) high-resolution pathways;
3) distilling pathways. In these pathways, skip pathway is
composed with a simple skip connection, and the high-
resolution pathway is composed of a series of densely con-
nected dilated convolutional layers, while distilling pathway
is composed in an encoder-decoder fashion with dense blocks
(see Fig. 2 for more detailed information). In the network, two

kinds of semantic information extracted by the high-resolution
pathway and the distilling pathway are finely merged to
ensure a balance between the location and semantics. By
carefully placing the high-resolution pathway in the network,
we can achieve better performance with affordable memory
consumption. Moreover, to better capture multi-scale structural
information and segment possible isolated organ portions with
various shapes and sizes, we propose an integrated multi-
scale information preservation mechanism. This is done along
with a task of contour regression for focusing on accurate
localization of the boundaries. Finally, since not all voxels are
of equivalent difficulty in segmentation [12], we introduce a
difficulty-guided cross-entropy loss to assist the network to
pay more attention to the areas with blurry boundaries.
Contributions. The main contributions of the paper are three-
fold:

1) Through careful analysis and experimental verification,
we find an intrinsic problem of the popular encoder-
decoder neural networks on low-contrast image segmen-
tation that they lack a mechanism to locate the touching
blurry or vanishing boundaries accurately.

2) To solve the problem, a novel high-resolution multi-scale
encoder-decoder network (HMEDN) with three different
kinds of pathways and a difficulty-aware loss function
is introduced. Specifically, in the designed network, the
proposed high-resolution pathway is a general plug-in
module for encoder-decoder networks to improve perfor-
mance on low-contrast image segmentation tasks.

3) Extensive experiments on CT, MR, and microscopic im-
age datasets, on both semantic and instance segmentation
tasks with 2D and 3D models verify the effectiveness
of our proposed network and the high-resolution path-
way. Through experiments, we find that the resolution
of semantic information is an essential factor to the
performance of a segmentation network which has usually
been neglected.

II. RELATED WORK

In the literature of deep learning methods for medical image
segmentation, two strategies are often incorporated to tackle
the problem of low tissue contrast [13]: (1) Introducing shape
prior to the segmentation framework as an overall regular-
ization to eliminate unreasonable predictions; (2) Improving
the discriminative and reasoning capacity of learned features
to allow the network to infer the content at blurry region(s)
by checking the surrounding intensity distribution and contour
variation tendency.

To implement the first strategy, contour-based methods are
combined with deep learning techniques. Specifically, [14]
utilized the segmentation results generated by convolutional
neural networks (CNN) as initialization, and then fine-tuned
the corresponding contours with the level-set and multi-atlas
algorithms, respectively. In [15], CNN was used to estimate
a reliable vector field that points from a voxel to its closest
voxel on the boundary to evolve the Sobolev active contour.
In [16], Mo et al. proposed a novel active contour method
by modeling the contour delineation problem as finding the
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limit cycle. In their method, deep learning was utilized to
estimate the vector field for a dynamic system. To make full
use of the shape information for network training, Tang et al.
[17] integrated CNN with a level-set algorithm and trained
the whole pipeline iteratively. This setting allowed the output
refined by the level-set algorithm to guide the training of the
CNN, thus allowing the robust shape prior to regularize the
training of the network. To ensure the prediction results to
be anatomically meaningful, Oktay et al. [18] modified the
convolutional neural network by adding an autoencoder to
enforce the prediction of the network to be close to the ground-
truth label map in both the original image space and the low
dimensional manifold. Recent progress in shape integration
using deep learning methods has shown promising results
in making the segmentation more robust and reasonable.
However, improving these methods also requires enhancing
the discriminative capacity of the learned features. This calls
for more medical image specific deep learning segmentation
methods, which is exactly our goal in this paper.

To improve the representative capacity of the segmenta-
tion algorithms, pioneer explorers took advantage of dis-
criminative features learned in an end-to-end manner using
patch-based CNNs, outperforming shallower machine learning
algorithms with engineered features. For instance, Roth et
al. [4] combined and cascaded multiple deep networks to
encourage diversity in the extracted semantic information for
better segmentation results. Fakhry et al. [19] tailored a deep
convolutional network specially for electron microscopy (EM)
images by studying the effect of kernel size and also the depth
of networks on the segmentation performance. However, seg-
mentation is a dense prediction task, which means each voxel
in the image will be given an estimated label. Therefore, the
one-voxel-at-a-time predicting manner of patch-based CNN is
not only time-consuming but also isolates the highly correlated
adjacent voxels, so that the performance of the network is
adversely influenced. To overcome the mentioned problems,
Long et al. [20] proposed a groundbreaking work, denoted
by fully convolutional neural networks (FCN), in which fully
connected layers were replaced by multiple upsampling layers
to make the size of the network output to be the same as the
input. By doing this, both the efficiency and the performance
of the networks were largely improved. After FCN, many
derivatives have been proposed for medical image analysis.
Among these works, Ronneberger et al. [21] designed a skip
connection linked symmetric encoder-decoder FCN named U-
Net. To further improve the information passing smoothness
in U-Net, Drozdzal et al. [22] introduced residual connection
[23] into the network. In [24], Chen et al. combined side
outputs from multiple levels of FCN to integrate semantic
information from different granularity for finer segmentation.
Nie et al. [2] integrated three sub-FCNs trained on T1, T2,
and fractional anisotropy (FA), respectively, to acquire and
fuse complementary information from different modalities for
accurate segmentation of infant brain images.

Besides using multiple modalities and adding connections
to the network, some researchers also improved segmen-
tation performance by integrating multiple correlated tasks.
For example, to improve the segmentation accuracy of the

pancreatic cyst, Zhou et al. [25] introduced the segmentation
of pancreas, which is simpler but highly correlated with
cyst segmentation, as an auxiliary task in a deep supervision
fashion to improve the performance on cyst segmentation.
In [26], Nogues et al. designed two networks for interior
segmentation and contour delineation separately. Then, the
results of the two networks are finely combined through
structured optimization by boundary neural fields. To further
tighten the connection between the two tasks for better results,
Chen et al. [3] proposed a network to fuse contour delineation
with foreground segmentation in a multi-task learning fashion.
To make full use of the learned contour and segmentation
results in an end-to-end trained framework for finer fusion of
the complementary information, Xu et al. [27] further merged
the learned contour and segmentation feature maps with con-
volution operations. Besides, the combination of convolutional
networks with graph models, i.e., conditional random fields
(CRF) [28], and Markov random fields (MRF) is also a good
way to model the context information [29].

As medical images are often in 3D, many researchers bor-
rowed complementary information from nearby highly corre-
lated slices to estimate the content of the blurry area. However,
a better idea is to extend the existing networks into 3D version
and enable them to see and learn automatically in the 3D
space. Along this direction, 3D U-Net [30] and V-Net [31]
are two of the pioneers. After that, many researchers further
introduced finer connections, such as residual connections
[23, 32], dense connections [33, 34], and deep supervision
[35], into the 3D networks to further improve the performance
of the networks. On the other hand, some found that 3D
CNNs could be too memory costing and computationally
intensive, and thus Zhou et al. [25] combined the results
of three 2D convolutional networks along three orthogonal
directions (axial, sagittal, and coronal directions) as an efficient
replacement. In [36], to exploit the intra-slice and inter-slice
context, authors introduced the convolutional long short-term
memory (CLSTM) [37] into the segmentation pipeline in an
end-to-end training manner.

Although the mentioned literature has largely improved
the segmentation performance of deep learning algorithms
on blurry medical images, the encoder-decoder plus skip
connection structure (shared by most of the existing works)
limits these networks from accurately locating the boundaries
of the target organs. In the following section, we will introduce
our solution to this problem in detail, by proposing a novel
deep learning framework, denoted as high-resolution multi-
scale encoder-decoder network (HMEDN).

III. METHOD

In this section, we introduce our High-Resolution Multi-
Scale Encoder-Decoder Network (HMEDN) for low-contrast
medical image segmentation. Specifically, four strategies are
adopted, each discussed in a separate subsection. First, we
introduce the distilling network, in which semantic information
is carefully distilled and preserved. Then, we elaborate on
the high-resolution pathway, which is constructed for high-
resolution semantic information exploitation. Next, we inte-
grate the task of contour regression with organ segmentation
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Fig. 2: Illustration of the structure of our proposed high-resolution multi-scale encoder-decoder network (HMEDN). The input
is a set of intensity image patches and the outputs are segmentation and contour probability maps. Rectangles and triangles
represent operations in the network. Three kinds of pathways, i.e., skip pathway (pathway 1©), distilling pathway (pathway
2©) and high-resolution pathway (pathway 3©) constitute the whole network.

for accurate boundary localization. Finally, we force the net-
work to concentrate more on the ambiguous boundary area by
designing a difficulty-guided cross-entropy loss function. Fig.
2 illustrates our proposed network.

A. Distilling Pathway

Our first strategy to segment low-contrast medical image
is to provide a more comprehensive multi-scale information
collection and fusion mechanism. In general, two structures
are usually adopted for multi-scale information preservation
in the literature, i.e., U-Net [21] and Holistically-nested Edge
Detection (HED) [38]. In the U-Net, multi-scale information
is gradually merged by concatenating the upsampled large
receptive-field layers with those passed through skip con-
nections with smaller receptive fields (i.e., merging no more
than two scales at a time). In this way, U-Net gradually
integrates and processes the multi-scale information delicately,
thus making the fusion of the information sufficient, and

allows the intermediate results to guide the subsequent fusion.
Comparatively, through fusing the feature maps from multiple
scales into the final output at the same time, the HED methods
omit the complicated convolution operations in the decoding
procedure and acquire multi-scale information more directly.
In this case, since all information is processed at the same
time, the fusion of multi-scale information can be done more
comprehensively.

To take advantage of both types of networks, we inherit the
U-Net structure as well as the side outputs of HED networks to
construct our distilling pathway. Moreover, in this pathway, to
further encourage smooth information flow between different
layers and make the training of the network more manageable,
we replace the original plain connections with dense connec-
tions initially introduced in [33]. This structure is denoted
by distilling pathway, due to the use of downsampling layer,
which can efficiently enlarge the receptive field and effectively
filter the redundant insignificant components. As shown in Fig.
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2, the outline of the distilling pathway (the black pathway) is
a U-Net with four downsampling and four upsampling layers.
However, besides the regular skip connections, three extra
side channels from intermediate layers with different sizes of
receptive fields are also upsampled and merged with the main
channel of the network to encourage more comprehensive
multi-scale information fusion. Moreover, by linking all the
preceding layers to the final layer, we construct dense blocks
(i.e., those solid green rectangles in Fig. 2) and use them as the
building block to encourage smooth information flow within
the network.

B. High-Resolution Pathway

Our second (and main) strategy is to endow the network
with a better capacity to extract discriminative high-resolution
semantic information. In the task of segmentation, the intuitive
tension between what and where has long been realized in
[20]. The solution to the problem in the current literature is
to combine the coarse layers with fine layers in the encoder-
decoder networks by skip connections and allow the networks
to make local decisions concerning the global structures. This
strategy works well in the high-contrast images with clear
and consistent boundaries. However, when it is applied to the
images with low contrast, local appearance features extracted
by lower layers may fail to refrain from the surrounding hy-
pothetical boundaries and recognize the vanishing boundaries,
causing negative effects on the accuracy of these algorithms.
Consequently, to achieve accurate boundary localization in
blurry images, a mechanism which can provide discriminative
high-resolution contextual information is needed. To meet
this special demand, the dilated convolution-based pathways
are introduced. Given a 2D image X with L channels, the
definition of a dilated convolution with kernel w of size 3 is
defined as:

Oi,j :=
2∑

a=0

2∑
b=0

L−1∑
l=0

wa,b,lX(i+ad),(j+bd),l, (1)

where d is the dilation factor, O is the output feature map, and
(i, j) is the location index in image X . Since this convolution
can arbitrarily enlarge the receptive field by tuning the dilation
factor d, it can be used to replace the downsample-upsample
structure to extract contextual information [8, 10]. This seman-
tic information extraction procedure can deliver two merits to
the corresponding network: (1) Because no resolution is lost in
the information processing procedure, small and thin objects
that are important for correctly understanding the image can
be finely preserved. (2) Since no downsampling operation is
included, the location information of the generated feature
maps can be better conserved.

The building block in these pathways is a residual dilated
convolutional block [8]. As shown in Fig. 2 (i.e., the yellow
squares), it is constructed by two convolution blocks and a
shortcut connection. The benefit of this block is two-fold:
(1) It improves the training speed and encourages smooth
information flow [23]; (2) Combining with the dilated convolu-
tions, skip connections implicitly exploit and fuse information

from different scales. Moreover, to further improve the long-
term information flow which is weak in the classic dilated
residual network [39], we combine dense connection to allow
the information from the early stage of the high-resolution
pathway to be directly passed to the final layer of the module.
This setting also leads to an even finer grain multi-scale
information collection of the whole network. After that, to
reduce the training difficulties and also to make the pathway
discriminative to the true organ (or tissue) boundaries, a deep
supervision mechanism is introduced. In our experiments, nine
residual dilated convolutional blocks compose the pathway.

C. Contour Information Integration
In recent studies, neuroscientists have investigated that, in

mammal visual system, contour delineation correlates with
object segmentation closely [40]. To incorporate these insights
to improve the segmentation accuracy, researchers integrate the
task of contour detection with the task of segmentation. The
advantage of this design is three-fold. (1) It provides extra
robust guidance to the task of segmentation. (2) It improves
the generalization capacity of the corresponding network.
(3) Introducing a task of contour regression can help guide
the network to concentrate more on the boundary of organ
regions, thus helping overcome the adverse effect of low tissue
contrast. In this paper, as shown in Fig. 2, a regression task is
added to the end of the network as auxiliary guidance. In the
existing studies [3, 27], thanks to the high image contrast, the
boundaries are usually clear and stable. As a result, authors in
these studies [3, 27] modeled the contour detection as a binary
classification problem. However, in our application, due to the
blurry nature of images, the voxels near the boundaries are
usually highly similar. As a result, it will be more reasonable to
model the boundary delineation task as a regression problem,
which estimates the probability of each voxel being on the
organ boundary.

To extract the contour for training, we first delineate the
boundaries of different organs by performing Canny detector
[41] on the segmentation ground-truth. Then, on this boundary
map, we further exert a Gaussian filter with a bandwidth
of δ. In the experiments, we empirically set δ = 2. For
other datasets, the setting in landmark heat map generation
[42, 43] can be followed (i.e., setting δ from 2 to 3 for good
performance). For each voxel v, we generate {yvr}yv

r∈Yv
r

as
an approximation of the probability map, which describes the
certainty of each voxel being on the boundary of an organ.
Hence, the regression target is to minimize an Euclidean loss
function as defined below:

Lr(Or;θ) =
1

N

∑
or∈Or

‖p(or)− yorr ‖2, (2)

where Lr is the loss of contour regression for the regression
feature maps Or, with N voxels and or as one of these N
voxels, p(or) as the probability of or being on the boundary.
θ represents the network parameters.

D. Difficulty-Guided Cross-Entropy Loss
To balance the frequency of the voxels from different

classes, categorical cross-entropy loss is a common choice for
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multi-class segmentation [2, 3]. Different from the original
cross-entropy loss, the categorical version adds a loss weight
νk for the voxels in the kth category. This weight is inversely
related to the portion of voxels belonging to the kth category:

Lc(Os;θ) = − 1

N

∑
os∈Os

K∑
k=1

νkyosk log p
(
os, y

os
k ;θ

)
, (3)

where Lc denotes the categorical cross-entropy loss for the
segmentation feature maps Os, with os as a voxel in it. K is
the number of categories, yosk ∈ {0, 1} denotes whether voxel
os belongs to the kth category or not, and p(os, yosk ;θ) denotes
the probability of a voxel os belonging to the kth category. This
probability is defined by the soft-max over the feature maps
of the final convolutional layer.

In a recent work, Li et al. [12] argued that not all voxels
are equal and more attention should be paid to the difficult
voxels. Inspired by this argument, we propose a difficulty-
guided weight map to guide the network and focus more on
the ambiguous areas. It is evident that the error of existing
networks mainly lies around the borders of both foregrounds
and backgrounds. It becomes even larger at the touching
boundary of soft tissues. With these observations, we construct
the weight map in three steps. (1) We use the Canny operator
to calculate the binary boundary image Bk of the category (i.e.,
organ) k, according to the segmentation ground-truth. (2) We
use a Gaussian filter with bandwidth δ2 to scan each Bk and
get the smoothed boundary image SBk. (3) Finally, all SBks
are summed up and then normalized to construct the final
weight map. Hence, the proposed difficulty-guided weight on
voxel v will be defined as:

µv = µ0 +
K∑

k=1

µk · SBvk, (4)

where µ0 is the base weight for all the voxels and µk is the
importance balancing weight of category k, similar to what
is used in Eq. (3). In the experiments, we set µ0 = 1, and
µ1 = µ2 = µ3 = µ = 25 as the ratio of the volume of
background to the volume of foreground. The same strategy
is also effective for other datasets. For the bandwidth δ2 of
the Gaussian filter, it is set as 8 to achieve a good coverage
of the ambiguous boundary regions in all the experiments.
In our designed map, we treat the regions of the foreground
that are far away from the boundary equally with those from
the background. Also, since the area emphasized by different
maps could overlap around the touching border, these areas are
automatically endowed with the most concentration. Replacing
the categorical weight map in Eq. (3) with our proposed
difficulty-guided weight map, we propose our loss function
Ls for segmentation, which is an improved version compared
to Lc, as:

Ls(Os;θ) = − 1

N

∑
os∈Os

K∑
k=1

µosyosk log p(os, y
os
k ;θ). (5)

Combining the loss for segmentation and contour regres-
sion, our final loss function for network optimization is:

L(Os,Or;θ) = Ls(Os;θ) + αLr(Or;θ) + βΓ(θ), (6)

where α and β are hyper-parameters used to balance the
importance between the terms, and Γ(θ) is the regulariza-
tion term (the `2 norm of the network parameters). In our
experiments, we obtained preferable results by setting α = 1
and making the normalized loss functions of segmentation
and regression to be in a comparable magnitude. For β, we
followed the suggestion of [44] and set it to a small value as
1× 10−7. Tuning the parameter β improves the performance
for 0.5%.

IV. EXPERIMENTS AND RESULTS

In this section, we first showcase the effectiveness of the
proposed algorithm on a pelvic CT image dataset, then a
multi-modal brain tumor dataset1 and a microscopic nuclei
dataset2 are included to demonstrate the generality of our
proposed method, especially evaluating the high-resolution
pathway. Specially, for the pelvic CT image dataset, con-
sidering the large size of pelvic organs, large receptive field
on the axial direction is used for accurate segmentation. For
computational efficiency, we model the problem as a 2D
semantic segmentation problem. For the brain tumor dataset,
considering the small tissue size and the diverse structures of
the brain tumors, we model the problem as a 3D semantic
segmentation problem. Lastly, the nuclei segmentation prob-
lem is a typical instance segmentation problem. In the first
part of the experiment, we conduct careful ablation studies to
verify the effectiveness of each component of the designed
network. Then, more experiments are further conducted on
the brain tumor and cell segmentation datasets to prove the
generalization capacity of the proposed network.

A. Pelvic Organ Segmentation

The evaluation of the proposed method on pelvic CT
image dataset starts by comparing the performance of dilated
convolutional networks with their encoder-decoder counter-
parts. Then, we introduce the high-resolution pathway to the
encoder-decoder network and test its effectiveness on detecting
blurry and vanishing boundaries. Next, we test the effective-
ness of the difficulty-guided cross-entropy loss function and
the multi-task learning mechanism. After that, we analyze the
effectiveness of the main hyper-parameters in our algorithm.
Finally, we compare our proposed algorithm with several state-
of-the-art medical image segmentation methods.

1) Data Description and Implementation Details: The
dataset used in this experiment is acquired by the North
Carolina Cancer Hospital, which includes 339 CT scans from
prostate cancer patients. In this task, three important pelvic
organs, i.e., prostate, bladder, and rectum are being segmented.
For preprocessing, we normalize the images using the common
mean and standard deviation. Before experiments, a simple
U-Net [21] is first run to extract ROIs for all the compared
algorithms, as a rough initial localization. In the experiment,
the network patch size is set to 144 × 208 × 5. In each
of the extracted patches, five consecutive slices across the

1 https://www.med.upenn.edu/sbia/brats2017/data.html
2 https://github.com/samuelschen/DSB2018



1057-7149 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2919937, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXXX 20XX 7

Fig. 3: Illustration of the dilated convolutional network.

axial plane are included as five different channels to introduce
space information across slices and to preserve across-slice
consistency in the axial direction. In the sampling procedure,
we permute the axial slices upside-down to double the number
of samples for data augmentation. We randomly divided the
data into the training, validation and testing sets with 180, 59
and 100 samples, respectively.

The implementations of all the compared algorithms in this
part are based on the Caffe platform [45]. To train the network,
we use Xavier method [46] to initialize all the parameters of
convolutional layers in the compared networks. To make a fair
comparison, we employ the Adam optimization method [47]
for all the methods with fixed hyper-parameters. The learning
rate (lr) is set to 0.001, and the step size hyper-parameter β1
is 0.9 and β2 equal to 0.999 in all cases. The batch size of
all compared methods is 10. The models were trained for at
least 200,000 iterations until we observed a plateau or over-
fitting tendency according to the loss on the validation set. To
evaluate the effectiveness of the proposed method extensively,
the Dice Similarity Coefficient (DSC) and Symmetric Average
Surface Distance (ASD) are reported.

2) Evaluation of Dilated Convolutional Networks: First,
we evaluate the performance of the high-resolution dilated
convolutional networks on CT pelvic organ segmentation. To
conduct such an evaluation, we design five baseline networks
and compare their performances with our method. Among the
compared networks, the first three are dilated convolutional
networks (see Fig. 3 for an overview of their architecture).
Their differences mainly lie in the number of residual dilated
convolutional blocks (refer to Fig. 2 for the definition) and
the dilation factors (d1 and d2). We name these first three
networks as DilNet1, DilNet2, and DilNet3 for simplicity.
Specifically, DilNet1 and DilNet2 both consist of 9 residual
dilated convolutional blocks. Their dilation factors d1 and
d2 are 3 and 5 for DilNet1, and 2, 4 for DilNet2. DilNet3
has six blocks (without three blocks within the black dotted
rectangular in Fig. 3). Its dilation factors d1 and d2 are 3 and
5, respectively. The receptive fields of these three networks
are 133 × 133, 97 × 97 and 85 × 85, respectively, which
are nearly in the receptive filed range of U-Nets [21] with
3 to 4 pooling layers. The fourth and the fifth networks are
the distilling networks with four and three pooling layers,
respectively. They are designed as representers for encoder-
decoder networks, named as Dst-Net1 (Distilling Network 1)
and Dst-Net2 (Distilling Network 2), respectively.

All the networks are trained in the same manner as men-
tioned in Section IV-A1, with the corresponding DSC and
memory consumption listed in Table I. Through experimental
results, we can find (1) larger receptive fields and deeper
network structures are essential for the performance of both
dilated convolutional networks and encoder-decoder networks.

TABLE I: Dice ratio (%) and memory consumption (Mb) com-
parison between dilated convolutional networks and encoder-
decoder networks

Network Prostate Bladder Rectum
Memory

Consumption
DilNet3 82.2 88.4 81.0 7259
DilNet2 83.4 88.5 81.9 9269
DilNet1 83.5 89.6 83.7 9269
DstNet2 85.4 92.2 85.0 5443
DstNet1 86.2 93.1 84.9 5933

TABLE II: Result comparison between distilling network
(DstNet1) and high-resolution distilling network (HRDN). The
parameter number (Param) of each network is also reported.

Networks Prostate Bladder Rectum Param
DSC(%) (M)

DstNet1 86.2±4.0 93.1±4.5 84.9±5.2 3.2
HRDN 87.5±3.8 93.2±5.5 85.9±5.3 3.38

Networks Prostate Bladder Rectum Param
ASD(mm) (M)

DstNet1 1.585±0.437 1.334±0.858 1.543±0.493 3.2
HRDN 1.434±0.425 1.542±2.278 1.395±0.617 3.38

(2) The encoder-decoder networks in the experiments tend to
provide better performance with smaller memory consumption
than the compared dilated networks in CT pelvic organ seg-
mentation. The reasons for its better result may be two-fold.
First, the relative plain connection and the smaller number
of kernels limit the performance of the dilated convolutional
network; Second, without the help of the downsampling op-
eration, dilated convolutional networks are more likely to be
adversely affected by the noise in CT images.

3) Evaluating the Effectiveness of Integrating High-
Resolution Pathway: Although in the last experiment, dilated
networks have shown relatively inferior performance than their
encoder-decoder competitors, the capacity of providing high-
resolution semantic information makes them potentially more
suitable than the coarse-grained encoder-decoder networks
on accurately localizing the blurry target boundaries, thus
improving the segmentation performance. Here, to reveal the
limitation of current encoder-decoder networks and show
the effectiveness of introducing high-resolution pathways for
solving the corresponding problems, we construct and compare
two networks. The baseline algorithm is the distilling network
(i.e., Dst-Net1) introduced in Section IV-A2. In the compared
network, we add a high-resolution pathway to connect the
encoder and decoder at the highest resolution in Dst-Net1,
named as high-resolution distilling network (HRDN). The
results are listed in Table II. From the results, we can see
an approximate 1% improvement in terms of DSC on the
two smaller and also more difficult organs with only 0.18M
parameters increase. The improvement of ASD on the high-
resolution pathway enhanced network is also promising, with
0.143mm on the prostate and 0.145mm on the rectum,
respectively. The results numerically verify the effectiveness
of the high-resolution pathway.

To further exploit the properties of the three kinds of basis
pathways, i.e., skip pathway, distilling pathway and high-
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Fig. 4: Comparison of representative feature maps.

Fig. 5: Comparison of the output activation maps of the
distilling network and the high-resolution distilling network.

resolution pathway, and then reveal what limitations of the
encoder-decoder network have been resolved by the high-
resolution pathway intuitively, we visualize and compare some
of the salient feature maps generated by the two networks on
a representative sample.

First, we illustrate the information conserved by the skip
pathway and the distilling pathway in Dst-Net1 and that by
the high-resolution pathway in HRDN. The exact locations
of where the information is collected in the corresponding
networks are also marked as 1©, 2©, and 3© consecutively
in Fig. 2. Three representative feature maps with high ac-
tivation values on the target organs, i.e., prostate, bladder,
and rectum, are illustrated and compared in Fig. 4. In this
selected sample, as pointed out by the white arrow in the
intensity map, due to the effects of artifacts in the CT image,
some wavy streaks appear on the three target organs and
affect the boundary on the top of the prostate, generating
a small visually isolated tissue. Under such circumstance,
as can be seen in the activation maps passed by the skip
pathway (see the first row of Fig. 4), although the skeletons
of the organs look more evident since the surrounding small
fractions of tissues are filtered, the less obvious but essential

texture information is either weakened (e.g., shown in the
first and third sub-figures) or strengthened (e.g., shown in
the second sub-figure) indistinguishably. As a consequence,
with the falsely included tiny texture, the isolated part looks
more like a portion of bladder than prostate. Moreover, as little
semantic information is contained in this pathway, no organ-
specific information is incorporated, leaving the coarse-grained
encoder-decoder pathway to select the correct boundary within
all these closely located boundary candidates. Considering the
feature maps generated by the distilling pathway (the second
row of Fig. 4), although the maps are more semantically
meaningful, the boundaries of these maps, especially those on
the border between bladder and prostate, are inaccurate, since
the downsampling operations can undermine the accuracy of
location information.

In contrast, since high-resolution semantic information is
preserved, the feature maps generated by the high-resolution
pathway is more like a combination of the above-mentioned
two kinds of feature maps. They contain detailed textu-
ral information and yet more semantics. Besides, thanks to
the integrated deep supervision mechanism, the hypothetical
boundaries are finely weakened or neglected (see the first and
second sub-figures of the third row in Fig. 4), making the
boundaries in the ambiguous area clear and correct.

Similar with the intermediate activation maps, as can be
seen in the final output feature maps and the corresponding
prediction maps of the two networks (Fig. 5), due to the falsely
located boundary, a large portion at the bottom of the bladder
and the top of the prostate is mixed in the distilling net-
work. Comparatively, thanks to the high-resolution pathway,
the damaged boundaries are handled more appropriately in
HRDN, resulting in a more feasible segmentation.

The numerical and qualitative results in this section sup-
port our arguments: (1) Simple skip connections can be
insufficient to detect the blurry or vanishing boundaries
in pelvic CT image segmentation; (2) The downsampling
and upsampling operations of the encoder-decoder networks
pose potential risks of inaccurate boundary localization and
mis-detecting isolated portions of the target; (3) By carefully
combining the advantage of the dense connection, residual
connection, dilated convolution and deep supervision, the
high-resolution pathway can well remedy the limitation of the
encoder-decoder network.

4) Balance Between Resolution and Network Complexity:
Although we have shown the effectiveness of introducing
high-resolution pathway, considering the large memory cost
for convolution operations on high-resolution feature maps,
adding the pathway in later stages of the network allows us to
use more complex network structure and is also a possible way
to improve the network performance. To explore the balance
between the network complexity and the resolution of the
semantic feature maps, four networks were further designed. In
these four networks, the high-resolution pathway is placed on
the first stage to the fourth stage of the network, respectively.
Here, the first stage indicates the feature extracting stage with
no downsampling, the second stage indicates the stage with
one downsampling, and so on. The feature number L of the
high-resolution pathways is 32, 40, 56, 72, respectively.
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TABLE III: Testing the balance between the network com-
plexity and the resolution of the high-resolution pathway. The
boldface results indicate no significant difference from the best
result (p-value < 0.05 of Students t-test).

Compared Networks Prostate Bladder Rectum
DSC(%)

HRDN-L1 0.875±0.038 0.932±0.055 0.859±0.053
HRDN-L2 0.875±0.039 0.936±0.047 0.861±0.054
HRDN-L3 0.879±0.039 0.940±0.043 0.868±0.051
HRDN-L4 0.874±0.042 0.936±0.047 0.860±0.060

Compared Networks Prostate Bladder Rectum
ASD(mm)

HRDN-L1 1.434±0.425 1.542±2.278 1.395±0.617
HRDN-L2 1.438±0.404 1.399±1.600 1.422±0.587
HRDN-L3 1.427±0.483 1.282±1.275 1.397±0.673
HRDN-L4 1.532±0.408 1.362±1.810 1.488±0.745

TABLE IV: Comparison between the high-resolution distilling
network (HRDN) and the multi-task HRDN with difficulty-
guided cross entropy loss (HMEDN). The boldface results
indicate no significant difference from the best result (p-value
< 0.05 in Student’s t-test).

Compared Networks Prostate Bladder Rectum
DSC(%)

HRDN-L3 87.9±3.9 94.0±4.3 86.8±5.1
HMEDN 88.3±4.3 94.4±4.2 87.2±5.5

Compared Networks Prostate Bladder Rectum
ASD(mm)

HRDN-L3 1.427±0.483 1.282±1.275 1.397±0.673
HMEDN 1.357±0.532 1.175±1.197 1.357±0.796

Compared Networks Prostate Bladder Rectum
Hausdorff Distance(mm)

HRDN-L3 17.2±21.6 21.6±21.0 20.5±17.0
HMEDN 15.3±20.9 17.5±16.8 17.2±11.1

In Table III, HRDN-L1 to HRDN-L4 denote the HRDNs
with high-resolution pathway on the first stage to the fourth
stage, respectively. One can see that tuning the location of
the high-resolution pathway does improve the performance of
the network, especially on improving the overall segmentation
accuracy (reflected by Dice ratio). However, for the pelvic
CT image dataset, placing the high-resolution to the third
stage provides the best balance between feature resolution and
network complexity.

5) Evaluation of Difficulty-Guided Loss Function and
Multi-task Learning Mechanism: To evaluate the effective-
ness of the difficulty-guided loss function and the multi-
task learning mechanism, two networks, including a baseline
High-Resolution Distilling Network (HRDN), and a multi-task
HRDN with difficulty-guided cross-entropy loss (HMEDN),
are designed and tested. The numerical results of these two
networks are reported in Table IV. Since the introduced
mechanism is mainly proposed to improve the performance
on boundary localization, an extra metric, i.e., the Hausdorff
Distance [48], which measures the largest distance between
two segmentation contours are introduced. As shown in the
table, all three metrics, i.e., DSC, ASD, and Hausdorff distance
witnessed a stable improvement on all the three organs.
Especially on ASD and the Hausdorff distance, which can be
easily influenced by the inaccurately located boundaries, the

(a) α. (b) δ2. (c) µ.

Fig. 6: Influence of hyper-parameters. In these figures, the Dice
ratio variation against different hyper-parameters are reported.
One can see that all the hyper-parameters are effective in
improving the performance of the algorithm. Setting α, δ2, and
µ to 1, 8, and 25, respectively, achieves the best performance.

average surface distance of the three organs has been improved
by approximately 4%, and 15% on average, respectively.

We also tested the effectiveness of the hyper-parameter α,
δ2, and µ. In this experiment, we tune these parameters in
a large range and train the corresponding networks in the
same manner. The result is reported in Fig. 6. From the
figure, one can see that, although the performance of the
proposed algorithm is quite stable in a broad range of the
hyper-parameters, tuning these parameters can still boost the
performance. The best result is achieved when α = 1, δ2 = 8,
and µ = 25.

6) Comparing with the State-of-the-art Methods: To further
evaluate the proposed network, we compared it with sev-
eral state-of-the-art methods for medical image segmentation.
These methods include:
(1) U-Net: U-Net [21] is the pioneering work that introduces
fully convolutional neural network [20] for medical image
analysis. This network achieved the best performance on ISBI
2012 EM challenge dataset [49].
(2) FCN: Fully convolutional neural network [20] is the first
trial that allows the network directly output a segmentation
mask having the same dimension of the input image. The
method achieved the state-of-the-art performance on multiple
popular benchmark datasets, like PASCAL VOC [50] in 20153.
(3) DCAN: Deep contour-aware neural network [3] has won
the 1st prize in 2015 MICCAI Grand Segmentation Challenge4

and 2015 MICCAI Nuclei Segmentation Challenge5.
(4) 2D DenseSeg: Densely convolutional segmentation neural
network [34] introduces dense connections into the HED
network to ensure maximum information flow. The 3D version
of this method has won the first prize in the 2017 MICCAI
grand challenge on 6-month infant brain MRI segmentation6.
(5) Proposed: Our proposed high-resolution multi-scale
encoder-decoder network (HMEDN) is a novel encoder-
decoder network enhanced by multi-scale dense connections,
high-resolution pathways, difficulty-guided cross-entropy loss
function and multi-task learning mechanism.

Table V shows the segmentation results of the compared
state-of-the-art methods. To make the final segmentation con-
tinuous and smooth, after the segmentation procedure, we

3 https://github.com/shelhamer/fcn.berkeleyvision.org
4 https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
5 http://miccai.cloudapp.net:8000/competitions/37
6 http://iseg2017.web.unc.edu
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TABLE V: DSC and ASD comparison with the state-of-the-
art methods on pelvic CT image dataset. The boldface results
indicate no significant difference from the best result (p-value
< 0.05 in Student’s t-test). The parameter number (Param) of
each network is also reported.

Networks Prostate Bladder Rectum Param
DSC(%) (M)

U-Net 86.4±5.1 92.4±5.5 85.8±4.9 20.54
FCN 86.5±4.5 93.1±5.3 85.7±5.3 14.72

DCAN 86.7±3.6 92.6±6.8 85.5±5.4 21.06
2D DenseSeg 87.0±4.3 93.0±7.1 85.3±5.5 1.26

Proposed 88.4±4.2 94.5±4.2 87.4±5.4 3.78

Networks Prostate Bladder Rectum Param
ASD(mm) (M)

U-Net 1.511±0.465 1.701±1.840 1.451±0.526 20.54
FCN 1.591±0.532 1.588±2.254 1.443±0.578 14.72

DCAN 1.525±0.521 1.357±1.293 1.514±0.747 21.06
2D DenseSeg 1.521±0.536 1.652±2.578 1.721±1.075 1.26

Proposed 1.346±0.531 1.162±1.196 1.332±0.793 3.78

conduct an anatomically-constrained merging step for each
compared algorithm. This is achieved by absorbing the isolated
regions inside the large segmentation targets. In addition, we
also discard the tiny isolated regions that reside outside the
larger ones. As it is obvious in the results, all algorithms
operate similarly well. However, our proposed algorithm still
outperforms the second best performance of the state-of-the-
art methods by about 1.5 percent in Dice ratio and more than
10 percent in the average surface distance. From Fig. 7, it
can be seen that our proposed algorithm tends to not only
achieve more accurate segmentation on those easy subjects but
also provide more robust results on difficult subjects. More
specifically, through the visualization of the segmentation
results on two representative samples in Fig. 8, it can be seen
that the advantage of our proposed method mainly lies in
two perspectives: (1) It can localize the boundary better,
especially on those blurry areas; (2) It can better handle
the CT artifacts. It is worth noting that hence no deep
supervision was involved in 2D DenseSeg [34] and FCN [20]
(while DCAN [3] has the deep supervision module, as our
algorithm), the performance of these two algorithms can be
further improved with the deep supervision mechanism.

B. Experiments on Brain Tumor Segmentation

We also extended our proposed model into a 3D version
and evaluated it on a multi-modal brain tumor segmentation
dataset [51]. In this dataset, four modalities of MRI scans,
including T1, T1-weighted, T2-weighted, and FLAIR volumes
were acquired. Experiments on this dataset involve segmenting
three regions of interest, i.e., the enhancing tumor (ET), the
tumor core (TC), and the whole tumor (WT), See Fig. 9. The
highly irregular structure and the tiny isolated tissues of tumors
in the brain, together with the low tissue-contrast makes the
segmentation task extremely hard. The dataset is comprised of
285 samples. We randomly select 60%, 15% and 25% from the
whole dataset for training, validation and testing, respectively.

For this 3D version of our method, to make the memory
cost affordable, we set the kernel number of each stage in
the distilling pathway as 16, 32, 64, 128, 256, respectively. The

(a) Prostate: The top 15. (b) Prostate: The Worst 15.

(c) Bladder: The top 15. (d) Bladder: The worst 15

(e) Rectum: The top 15. (f) Rectum: The worst 15.

Fig. 7: Precision and robustness comparison of the compared
algorithms. The sub-figures illustrate the Dice ratio of the 15
best and worst segmented samples of each algorithm.

high-resolution pathway was added to the second and the third
stage of the network (with the channel number (L) of 32 and
64, respectively) to find the best balance between semantic
resolution and network complexity. Also, to encourage the
network to make full use of all four modalities and improve
its robustness, dropout was added to the end of each stage
of all the compared networks. Moreover, since the structure
of the tumors is irregular and highly dispersed, the boundary
regression branch was discarded in this task. Four state-
of-the-art algorithms, i.e., 3D U-Net [30], Deepmedic [7],
3D DenseSeg [34], and enhanced U-Net (E-UNet) [52] are
included for comparison. The cropped and resized images that
contain only the foreground are utilized for our experiment.
Each modality was normalized with the corresponding mean
and standard deviation. The patch size and batch size of
Deepmedic were 37 × 37 × 37 and 10 as in [7]. For other
compared methods, we adopted the whole brain images with
the size of 128× 128× 128 as input. One image was utilized
for training each time. In this experiment, we followed the
training and data augmentation protocol of [53].

Dice ratio and average surface distance of the segmen-
tation are measured for comparison. A visualization of the
segmentation is illustrated in Fig. 10. Analyzing at these
results, we have several observations: (1) Because of the
small and irregular sub-structure of tumors, a finer resolution
of semantic information shows to be more preferable. As a
consequence, the proposed network with the high-resolution
pathway on the second stage outperforms its counterpart, in
which the high-resolution is placed in the three stage. (2)
The large performance improvement of the other compared
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U-Net FCN DCAN 2D DenseSeg Proposed

Fig. 8: Representative segmentation results of the compared state-of-the-art algorithms on the pelvic CT image dataset. In the
first and the fourth rows, the segmentation masks and intensity images in the axial direction are provided. In the second and the
fifth rows, the results in the coronal direction are provided. The yellow curves in the segmentation masks indicate the ground-
truth contours of the target organs. The third and the sixth rows are the difference map and the segmentation ground-truth in
3D space. The green, red, and blue fragments are the false predictions on prostate, bladder, and rectum, respectively.

algorithms over the baseline 3D U-Net indicates the effec-
tiveness of finer connections, like residual connections [23]
and dense connections [33]. (3) Comparing the performance
of Deepmedic with the performance of others, we have the
observation that algorithms with larger receptive fields tend to
have good performance improvement over large targets, like,
WT and TC, but this is not necessarily true on small targets,
like (ET). (4) The networks with an encoder-decoder network
structure, which can carefully integrate semantic information
with location information tend to provide better results on
targets with smaller size and a complex structure (ET).

C. Experiments on Nuclei Segmentation

Finally, we further integrated the high-resolution pathway
with existing popular network structures and tested its perfor-
mance on a nuclei segmentation dataset to verify the effec-

tiveness of the proposed module. For this task, we segmented
different nuclei as independent individuals. Therefore, it is
a typical instance segmentation task. However, in this task,
the touching nuclei and the highly similar texture of different
targets makes the accurate segmentation extremely hard (See
sub-figure (g) and (h) in Fig. 11). To solve the problem,
we adopted a popular framework [54], which collects the
foreground segmentation feature map, boundary feature map
and nuclei interior segmentation feature map (generated by a
multi-task deep learning network) for a watershed transform
algorithm [55] to conduct instance segmentation.

In this experiment, we integrated our proposed high-
resolution pathway with ResNet-34 as the backbone feature
encoder. The high-resolution pathway is placed in the second,
third, and fourth stage to find the best balance between the
network complexity and the resolution of semantic features.
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Fig. 9: Label and intensity image patches of the brain tumor
dataset. The visualized image patches (from left to right) are:
(A) the whole tumor in FLAIR, (B) the tumor core in T2, (C)
the enhancing tumor structures in T1c, (D) the final labels of
the tumor structures (the combination of all segmentations) in
T1: edema (green), non-enhancing solid core (red), enhancing
core (yellow).

U-Net Deepmedic 3D DenseSeg

E-UNet Proposed Ground truth Intensity Image (T1c)

Fig. 10: Segmentation results on the brain tumor dataset. In
these figures, different colors indicate different tumor catego-
rizations. The T1-weighted image is selected for visualization
of the corresponding input images.

TABLE VI: Comparison with the state-of-the-art methods on
the brain tumor dataset. The Dice ratio and ASD of the whole
tumor (WT), tumor core (TC) and enhancing tumor (ET)
are reported. The high-resolution pathway was placed on the
second (Proposed-L2) and the third stage (Proposed-L3) to
find a good balance between semantic resolution and network
complexity. The boldface results indicate no significant dif-
ference from the best result (p-value < 0.05 in Student’s t-
test). The parameter number (Param) of each network is also
reported.

Networks WT TC ET Param
DSC(%) (M)

3D U-Net 84.6±10.4 74.0±20.5 67.7±18.6 6.53
Deepmedic 87.4±6.4 78.8±15.4 75.4±12.1 2.86

E-UNet 88.5±5.6 80.1±18.8 77.5±11.3 8.27
3D DenseSeg 88.0±6.7 80.1±16.6 74.7±15.1 1.26
Proposed-L2 89.7±5.2 83.9±14.4 79.8±10.7 4.39
Proposed-L3 89.0±5.5 82.2±15.0 77.7±13.8 9.64

Networks WT TC ET Param
ASD(mm) (M)

3D U-Net 4.261±4.408 7.030±6.775 5.920±6.691 6.53
Deepmedic 1.643±0.624 1.999±1.387 1.069±0.597 2.86

E-UNet 1.467±0.604 1.737±1.621 1.004±0.712 8.27
3D DenseSeg 1.826±1.290 1.799±1.431 1.258±1.168 1.26
Proposed-L2 1.288±0.565 1.481±1.244 0.895±0.582 4.39
Proposed-L3 1.455±0.577 1.676±1.324 0.923±0.563 9.64

The channel numbers for the high-resolution pathway of the
three networks are 128, 256 and 512, respectively. Five state-
of-the-art networks, i.e., U-Net [21], DCAN [3], ResNet-34
[23], DenseNet-121 [33], and ResNet-101 [23] are adopted as
encoder for comparison. Except for U-Net, all the models are

TABLE VII: Result comparison with the state-of-the-art net-
work structures on the nuclei segmentation dataset. The bold-
face results indicate no significant difference from the best
result (p-value < 0.05 in Student’s t-test). The parameter
number (Param) of each network is also reported.

Networks F1-Score Object Dice H-Distance Param
(%) (%) (mm) (M)

U-Net 87.9±13.4 86.8±11.1 6.93±8.73 24.16
DCAN 89.0±12.3 87.3±10.2 6.49±8.83 21.06

ResNet-34 88.5±12.6 87.2±10.5 6.50±7.59 28.03
DenseNet-121 89.9±11.3 88.2±9.7 5.74±7.02 74.90
ResNet-101 90.3±10.3 88.6±8.8 5.53±6.07 96.92

ResNet34+HR-L2 91.2±9.7 89.0±8.6 5.30±7.11 34.96
ResNet34+HR-L3 91.1±10.2 89.1±8.8 5.07±5.88 42.19
ResNet34+HR-L4 90.3±10.9 88.5±9.6 5.42±6.37 67.62

fine-tuned from ImageNet pre-training. The nuclei dataset [54]
is comprised of 3627 microscopic images. We randomly di-
vided them into three parts with 2000 samples for training, 627
for validation and 1000 for testing. Heavy data augmentation
includes random zooming, cropping, rotation, flipping, channel
shifting, elastic transform and adding noise is employed to
improve the generalization capacity of the models. We train
all models for at least 800 epochs with Adam optimizer [47]
until a loss plateau is observed on the validation set.

F1-score, object Dice, and Hausdorff distance of the com-
pared algorithms are reported in Table VII. From the table,
we can find that (1) the proposed high-resolution pathway
improved the performance of ResNet-34 by 1.8%, 1.3% and
16.6% on F1-score, object dice, and H-distance, respectively
in the worst case; (2) The resolution of semantic feature
maps did influence the performance of the network. When
placed on the fourth stage of the network, the bonus of high-
resolution pathway decreased and the corresponding network
performed similarly with the ResNet-101 and DenseNet-121;
(3) Placing the high-resolution pathway on the third stage
of the network achieved the best balance between semantic
feature resolution and network complexity. From Fig. 11, we
can see that the performance improvement mainly comes from
the better detection of fuzzy boundaries of touching nuclei.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a high-resolution multi-scale
encoder-decoder network (HMEDN) to segment medical im-
ages, especially for the challenging cases with blurry and
vanishing boundaries caused by low tissue contrast. In this
network, three kinds of pathways (i.e., skip pathways, distilling
pathways, and high-resolution pathways) were integrated to
extract meaningful features that capture accurate location and
semantic information. Specifically, in the distilling pathway,
both U-Net structure and HED structure were utilized to
capture comprehensive multi-scale information. In the high-
resolution pathway, the densely connected residual dilated
blocks were adopted to extract location accurate semantic
information for the vague boundary localization. Moreover,
to further improve the boundary localization accuracy and the
performance of the network on the relatively “hard” regions,
we added a contour regression task and a difficulty-guided
cross entropy loss to the network. Extensive experiments
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(a) U-Net (b) DCAN

(f) ResNet34+HR-L3

(g) Ground-truth (h) Intensity Image

(c) DenseNet-121 (d) ResNet-101

(e) ResNet-34

Fig. 11: Segmentation results illustration on the nuclei seg-
mentation dataset. In these figures, masks of different colors
are corresponding to the segmented nuclei. The red arrows in
the figures indicate representative segmentation results and the
corresponding intensity map.

indicated the superior performance and good generality of
our designed network. Through the experiments, we made
several observations: (1) Skip connections, which are usually
adopted in the encoder-decoder networks, are not enough
for detecting the blurry and vanishing boundaries in medical
images. (2) Finding a good balance between semantic feature
resolution and the network complexity is an important factor
for the segmentation performance, especially when small and
complicated structures are being segmented in blurry images.

Observing the failed samples of our algorithm, we found
that the algorithm fails in cases where the boundaries are
totally invisible due to significant amounts of noise incurred
by low dose, metal, and motion artifacts, and so forth. To solve
these problems, in the future we will combine our algorithm
with shape-based segmentation methods and incorporate more
robust shape and structural information of target organs.
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