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Abstract—Optimizing the hyper-parameters of a multi-layer 
perceptron (MLP) artificial neural network (ANN) is not a trivial 
task, and even today the trial-and-error approach is widely used. 
Many works have already presented using the genetic algorithm 
(GA) to help in this optimization search including MLP topology, 
weights, and bias optimization. This work proposes adding hyper-
parameters for weights initialization and regularization to be 
optimized simultaneously with the usually MLP topology and 
learning hyper-parameters. It also analyses which hyper-
parameters are more correlated with classification performance, 
allowing a reduction in the search space, which decreases the time 
and computation needed to reach a good set of hyper-parameters. 
Results achieved with public datasets reveal an increase in 
performance when compared with similar works. Also, the hyper-
parameters related to weights initialization and regularization are 
among the top 5 most relevant hyper-parameters to explain the 
accuracy performance in all datasets, showing the importance of 
including them in the optimization process. 

Keywords—artificial neural network, multi-layer perceptron, 
MLP, genetic algorithm, GA, hyper-parameters 

I. INTRODUCTION 
Once each problem has specificities about its data, to choose 

the optimal hyper-parameters of an MLP usually involves a trial-
and-error approach, which consumes time, computational 
resources and requires the researcher to have great experience to 
properly tune the MLP. It is thus highly desirable to have a 
method to automatically search for the optimal hyper-
parameters efficiently. By hyper-parameters we mean those 
responsible for defining the topology, learning, weights 
initialization and regularization options of an MLP. 

GA has been widely used as an alternative to the classical 
Back-propagation (BP) algorithm [1] to tune the set of weight 
values of MLP with fixed neural topology such as in [2] [3]. 
Some works studied the use of GA to find only the MLP 
topology, i.e., the number of hidden layers and the number of 
neurons in each layer, as in [4]. Others use GA to search for the 
optimal values of MLP weights together with its topology, 
instead of using the classical BP, as in [5]. GA has also been 
used to tune MLP weights and topology such as in [6] [7], and 
to compose a hybrid training strategy with BP [8]. This hyper-
parameter optimizations certainly increases the performance of 
the MLP. However, there are other essential hyper-parameters, 

such as weights initialization and regularization that also need to 
be tuned because they can improve the MLP performance.  

The weights initialization hyper-parameters used in this 
work control the statistical distribution and the scale of initial 
weights. Poorly initialized weights may prevent to achieve a 
good performance, either leading to a slower training and 
requiring more epochs to train or to a faster training but with an 
increased risk of being trapped in a local minimum [9]. On the 
other hand, an optimized weight initialization will allow the 
MLP back-propagation to efficiently decrease the error through 
the epochs, reaching better performance.  

The regularization hyper-parameters are especially essential 
to improve the generalization of a network with limited sample 
size and a large number of parameters [10]. With a large number 
of parameters, the MLP can memorize the training instances 
exactly and achieve a supposed error-free perfect fit (Fig. 1), 
compromising the capability of the network to generalize the 
acquired knowledge on prediction for the examples not used in 
training. 

 
Fig. 1. The circle dots represent the training set and the diamond dots the test 
set. The non-optimized regularization hyper-parameters can result in the overfit 
of the MLP, i.e. with loss of generalization capability and higher error on the 
test set (fitting curve on left chart). The regularization method is especially 
important with limited sample size and a large number of parameters, leading 
to a better generalization and lower error on the test set (fitting curve on right 
chart). The symbols are in the same position on both charts. 

To improve the classification performance, this work 
proposes adding the weights initialization and the regularization 
hyper-parameters to be optimized simultaneously with the MLP 
topology and learning hyper-parameters by using a GA. The 
proposed method named MLPGA+4 because of the 4 hyper-
parameters categories to be optimized simultaneously. 
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Moreover, the relationship between these added hyper-
parameters and the classification performance will be analyzed 
to understand the effects of these hyper-parameters on the 
classification performance. It will allow identifying hyper-
parameters space regions where best classification performance 
is achieved. With that, it will also be possible to restrict the 
search space and to develop a more efficient GA, which requires 
less time and computational resources to find a good set of 
hyper-parameters. 

The remainder of this paper is organized as follows: Section 
II briefly presents some general concepts about MLP networks 
and GA. Section III details the methodology developed, 
followed by the experimental results in Section IV. Section V 
presents the conclusions and future works.  

II. GENERAL CONCEPTS AND RELATED WORKS 
This section presents some general concepts of MLP and the 

hyper-parameters we propose adding to the optimization 
process. General concepts of GA will be presented as well as the 
modifications made to optimize categorical, integer and real 
value hyper-parameters simultaneously. The Related Works 
section presents other methods of MLP hyper-parameter 
optimization. 

A. Multilayer Perceptron hyper-parameter effects 
MLP is one of the most widely used architectures of MLP 

due to its versatility in classification and regression problems 
and its universal function approximation characteristic [1] [11] 
[12] [13]. An example of one MLP is presented in Fig. 2. The 
small circles represent the input and output neurons in their 
respective layers, and the large circles represent the neurons 
present in the hidden layers. This structure is also called 
topology of the MLP. The connections between the neurons, 
also known as synaptic weights, are represented by arrows and 
contains the knowledge of the MLP. This knowledge is acquired 
during the training phase, usually by using the BP algorithm, 
when the MLP learns from examples. Below we present the 
conceptual effects of the MLP hyper-parameters used in this 
work. 

 
Fig. 2. Example of an MLP with 3 inputs, 3 hidden layers; the first with 3 
neurons, the second with 2 neurons and the third with 3 neurons and an output 
layer with 2 neurons. 

1) Topology hyper-parameters 
The increase in the number of neurons, allocated in one or 

more hidden layers, allows an MLP mapping more complex 
relationships between input and output. However, a great 
number of neurons increases the time and computation needed 
to train the network and raises the probability of overfitting. On 
the other hand, fewer neurons and fewer hidden layers limit the 
MLP to map only simpler relationships. 

Even today, there is no established rule to define the number 
of neurons and hidden layers, so the trial-and-error approach is 
widely used.   

2) Learning Rate hyper-parameters 
There are several optimization methods to properly adjust 

the synaptic weights. The Gradient Descent was the first one and 
it was necessary to manual tune the learning rate, a critical 
hyper-parameter to obtain high performance. More recently 
some methods with dynamic adaptation of the learning rate were 
proposed, such as ADADELTA [14], used in this work. This 
method dynamically changes the learning rate to optimize the 
synaptic weights faster and without being trapped in local 
minima. It requires two hyper-parameters to be set: 1) r 
represents a decay constant, similar to that used in the 
momentum method, 2) e is a constant to avoid the division by 
zero. Also, it appears to be robust to different topologies, 
datasets and the other hyper-parameters selection [14]. 

3) Synaptic Weights Initialization hyper-parameters 
The speed and convergence of the learning process of an 

MLP, as in many multidimensional optimization problems, is 
strongly influenced by the initial condition [15] [16]. In an MLP, 
these initial states are given by the initial synaptic weights. In 
this work, we used the hyper-parameters that allow the initial 
values to be sampled from different probabilistic distributions, 
such as Gaussian and Uniform, and different scales, as depicted 
in Fig. 3. Thus, we allow each data set to obtain the optimal 
initial condition to increase the classification performance. 

 
Fig. 3. Initial weight distribution comparison: Gaussian and Uniform with 
scales of 0.5 and 1.5. 

4) Regularization hyper-parameters 
With the increase of computational power, it is easy to create 

an MLP with several layers and a large number of neurons in 
each layer. However, this large number of parameters may lead 
to overfitting, i.e., the generalization capability loss [10]. The 
regularization hyper-parameters considered in this work are 
used to preserve the generalization capability in 2 main ways: 

a) Input dropout ratio 
The input dropout ratio constrains the online optimization so 

that during forward propagation, for a given training example, 
each neuron in the network suppresses its activation with 
probability P [17]. 
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b) l1 and l2 
These hyper-parameters modify the loss function so as to 

minimize loss. l1 constraints the absolute value of the synaptic 
weights, while l2 constrains the sum of the squared weights; 
both may cause synaptic weights to become zero, also known as 
pruning process. If l1 and l2 hyper-parameters are well adjusted, 
they reduce the number of synaptic weights, appropriately 
reducing the overfit effect. On the other hand, if l1 and l2 hyper-
parameters are poorly optimized, too many parameters may 
become zero, oversimplifying the acquired knowledge, or too 
little parameters may become zero, increasing the overfit effect. 

B. Genetic Algorithm optimizing an MLP 
GA is one of the evolutionary computation search algorithms 

based on the natural evolutionary theory [18]. It states that 
individuals who are best adapted to their environment are more 
likely to survive and to reproduce. The next generation 
represented by their offspring will inherit a mix of the parents’ 
characteristics, and generate individuals who are enhanced and 
worse. The enhanced ones will be even more likely to survive 
and to reproduce whereas the worse ones will disappear. After 
several generations in this process, the population is expected to 
evolve and find an individual whose characteristics allow it to 
be the best-adapted individual. 

The main characteristics of GA include (1) robustness to 
discontinuities of the fitness function because GA does not 
require the fitness function to have a derivative, (2) robustness 
to local minima due to its global search characteristic and (3) 
directed search which does not require exploring the complete 
solutions space. The following are the details on using GA for 
MLP hyper-parameters optimization.  

1) Fitness Function 
A fitness function calculates a measure that allows assessing 

how adapted an individual is to the environment. This metric is 
used to direct the search for the characteristics that will result in 
a better-adapted individual, i.e., with better performance in a 
task. In this paper context, we defined the fitness function as the 
accuracy rate in classification tasks. 

2) Chromosomic Representation 
The binary chromosomic representation [18] is the most 

widely used representation and consists in encoding the 
information in genes that can assume zero and one values. To 
avoid one of its caveats, like the Hamming Abyss, this work 
used a mixed representation in which each gene can assume 
integer values for categorical and discrete characteristics and 
real values for continuous characteristics. 

3) Initial Population 
The initial population contains all the individuals that will be 

assessed by the fitness function and submitted to the genetic 
operators. Usually, it is generated by random sampling, but in 
this work, additional care was taken to ensure that there are no 
replicate individuals at the beginning of the optimization 
process. 

4) Genetic Operators 
a) Selection 

The selection operator chooses 2 individuals from the 
population based on its fitness function value to submit to cross-

over operator. We here used the tournament selection with 2 
individuals. These 2 individuals are randomly sampled from the 
population and their fitness function values are compared, the 
one with the highest value is then selected. This process is 
repeated for another random sample of 2 individuals and the 
winner is also selected. These 2 selected winner individuals are 
then submitted to the cross-over operator. 

b) Cross-over 
This operator exchanges the chromosomic information 

between 2 individuals to generate offspring with mixed 
characteristics. We here used the uniform cross-over, which 
consists in sampling a random variable from the Bernoulli 
distribution [19] with p = 0.5 for each gene. Then defining which 
parent will send its genes to the offspring based on this sample. 
For example, the first offspring will inherit the genes from 
parent #1 if the random variable value is “0” and inherit the 
genes from parent #2 if the random variable value is “1”. The 
second offspring will inherit the opposing genes. An example is 
depicted in Fig. 4. 

The probability of the cross-over to occur was defined as 
80%; otherwise, the selected individuals proceed to the next 
operator without modifications. 

Once the chromosomic representation adopted here contains 
categorical, discrete and continuous genes, instead of the widely 
used binary representation, the cross-over operator was 
customized to properly exchange the genetic information, as 
shown below. 

 
Fig. 4. Example of a uniform cross-over – the parent’s genes inheritance are 
stochastically defined by sampling from a Bernoulli distribution. The genes A, 
B, C and D, each one representing one characteristic, are exchanged or not 
between 2 parents. The 2 offspring will inherit a combination of parent’s 
characteristics. 

c) Mutation 
The mutation operator introduces a stochastic factor to the 

artificial evolution algorithm and randomly changes the 
information contained in a gene. Here, the probability of a 
mutation to occur was defined as 20%. Also, the mutation and 
the cross-over operators occur independently. 

C. Related Works 
There are some works optimizing the MLP by using GA with 

different strategies.  

The G-Prop method, proposed by [20], uses GA to select the 
initial weights and optimize the number of neurons in a single 
hidden layer. This is a hybrid approach where the synaptic 
weights are initialized by a GA and optimized by BP algorithm. 
The NNC method, proposed by [21], uses grammatical 
evolution to encode the network topology and the synaptic 
weights. The GE-BP method, proposed by [22], also uses 
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grammatical evolution to design the MLP topology but uses BP 
for training. The NN-SGE method, proposed by [4], uses 
structured grammatical evolution to optimize both topology and 
synaptic weights. 

The proposed method, MLPGA+4, optimizes not only the 
topology and the learning rate but initial weights and 
regularization hyper-parameters also. Consequently, it is 
expected the resulting MLP is better optimized and have a 
higher accuracy performance in classification.  

III. METHOD 
The classification performance of the proposed method and 

the effect of these hyper-parameters on accuracy ratio was 
assessed by using five public datasets. 

A. Datasets 
Five public datasets from UCI Machine Learning Repository 

were used with no pre-processing or data augmentation 
methodologies, i.e., the datasets are used as obtained. The 
features column shows how many inputs are available and the 
instances column shows how many observations from each 
category each dataset contains. 

TABLE I.  UCI DATASETS USED IN EXPERIMENTS 

Dataset Features Instances a 
Breast Cancer Wisconsin Diagnostic 
(BCWD) 30 357+212=569 

Ionosphere (Iono) 34 225+126=351 
Connectionist Bench - Sonar, Mines 
vs. Rocks (Sonar) 60 97+111=208 

Heart Disease (Heart) 14 164+139=303 

Iris 4 50+50+50=150 
a. Number of observations in each category and the total 

B. MLP Neural Network hyper-parameters 
Table II presents the hyper-parameters to be optimized by 

GA, the range of permitted values and gene locations. The 
numbers in parenthesis represent the types of genes: (1) 
Categorical, (2) Discrete and (3) Continuous. The hyper-
parameters this work proposes to include in the optimization 
process, weights initialization and regularization, are presented 
in genes 1 to 2 and 12 to 14, respectively. 

TABLE II.  HYPER-PARAMETERS TO BE OPTIMIZED BY GA, THE RANGE 
OF PERMITTED VALUES AND GENE LOCATIONS 

Hyper-parameter (type of gene) Range of permitted 
values Gene 

Initial Weight Distr. (1) 
1 – Gaussian 
2 – Uniform 
3 – Uniform Adaptive 

1 

Initial Weight Scale (3) [0.5, 1.5] 2 

Nº of hidden layers (2) [1, 5] 3 

Nº of neurons in hidden layer 1 (2) [1, 16] 4 

Nº of neurons in hidden layer 2 (2) [1, 16] 5 

Nº of neurons in hidden layer 3 (2) [1, 16] 6 

Nº of neurons in hidden layer 4 (2) [1, 16] 7 

Nº of neurons in hidden layer 5 (2) [1, 16] 8 

Activation Function (1) 
1 – Tanh 
2 – Rectifier 
3 – Maxout 

9 

Adaptive learning rate: time decay 
factor – ALRTD (3) [0.985, 0.995] 10 

Adaptive learning rate: smoothing 
factor – ALRSM (3) [1e-9, 1e-7] 11 

Input dropout ratio (3) [0.0, 0.8] 12 

l1 (3) [0.0, 1e-3] 13 

l2 (3) [0.0, 1e-3] 14 

 

 

 
Fig. 5. The flowchart diagram of MLP hyper-parameters being optimized by GA. Here, the weights initialization and regularization hyper-parameters are encoded 
in a chromosomic vector to be optimized by GA, simultaneously with network structure (topology) and learning hyper-parameters. 

Initial 
Population

Population 
Evaluation

Hyper 
parameters 

selected

Mutation

Yes

No

3 Genetic Algorithm Hyper parameter tuning

Genetic Operators

Selection

Crossover

Stop?

ANN MLP Approach

Input
Layer Hidden Layers Output

Layer

1 Hyper parameter encoding2

Weights Initialization

Network Structure

Learning Parameters

Regularization Parameters

2018 International Joint Conference on Neural Networks (IJCNN)



The selected method to optimize the synaptic weights and 
biases is BP with adaptive learning rate and a train limited by 
1,000 epochs. Also, a 3-fold cross-validation technique was used 
to assess the generalization capabilities of the MLP. The 3-fold 
was chosen due to datasets number of instances limitation, since 
training with 90% of limited instances may increase the risk of 
overfitting. 

C. GA Setup 
The mixed chromosomic representation was adopted to 

allow the GA to evolve with different types of genes. On 
creating the initial population, the categorical and discrete genes 
were sampled with equal probabilities for each category or 
integer number. The continuous genes assumed a real value 
from a uniform distribution within the range of permitted values. 
The details about how the GA operators works are described in 
section II.B.4. 

The fitness function adopted calculates the mean accuracy 
rate of the validation sets of a 3-fold cross-validation setup. The 
initial population was defined to contain 100 individuals, and the 
number of generations is determined as 20. The elitism 
technique was adopted in 5%. This method, presented in Fig. 5, 
was applied to 30 independent runs, generating 60,000 trained 
MLP for each dataset. 

To assess which of the hyper-parameters are more correlated 
with the classification performance and to quantify its effects, a 
non-linear random forest model [23] was fitted to the data. This 
model was chosen due to his ability to calculate the variable 
importance. So, we can easily identify which hyper-parameter 
has more influence in classification performance. The data used 
in the model contains 60,000 observations of each dataset, 
resulting from a population of 100 individuals from 20 
generations and 30 independent runs. The MLP hyper-
parameters setup were the inputs, and the mean accuracy rate of 
the 3-fold cross-validation was the target. 

The importance of each hyper-parameter and its effects were 
analyzed graphically and statistically using the Mann-Whitney 
U test [24], which is a well established nonparametric test used 
to compare the data distribution of 2 groups. The statistical 
distribution of the results will be presented in a boxplot graphic 
[25], which allows a quick comparison between groups, such as 
median, 1st and 3rd quartiles, and dispersion, and visually 
identifying patterns. The essays were conducted on a Linux 
Ubuntu 16.04 operational system with R 3.4.1 statistical 
computing platform and H2O machine learning library version 
3.16.0.2. 

IV. EXPERIMENTAL RESULTS 
Table III presents the classification performance of the best 

MLP after 20 generations in each of the 30 independent runs on 
each dataset with its respective number of neurons using the 
MLPGA+4, and the results from similar works. The mean 
accuracy rate and the number of neurons are presented with their 
respective standard deviation (±). 

Considering the BCWD dataset, the proposed method shows 
a slightly higher accuracy rate in classifying cancer as benign or 
malign when compared with the G-Prop method, but with a 
considerably lower standard deviation, evidencing better 

stability in achieving this performance. Conversely, the 
topology of the proposed method shows a substantially higher 
number of neurons, among those who presented this 
information.  

Analyzing the Ionosphere dataset results, MLPGA+4 
presented a considerably higher accuracy rate when compared 
with NNC method. As the previous datasets, the standard 
deviation of the proposed method remains the smallest and the 
number of neurons, considerably higher.  

In the Sonar dataset, the proposed approach shows an 
increase of 15.79% on accuracy rate when compared with NN-
SGE, and with a considerably lower standard deviation. Yet 
again with a noticeably higher number of neurons. 

Analyzing the Heart dataset, MLPGA+4 presented an 
increase of 8.30% on accuracy rate when compared with the GE-
BP method. Also presented a considerably lower standard 
deviation. 

Finally, considering the Iris dataset, the proposed method 
shows a slightly higher accuracy rate when compared with the 
GE-BP method, and a considerably lower standard deviation. 

TABLE III.  CLASSIFICATION PERFORMANCE AND Nº OF NEURONS 

Dataset Method Accuracy Neurons 

BCWD 

G-Prop 99.00% ± 0.50% 3.20 ± 0.8 
NNC 95.44% - 

GE-BP 95.90% ± 3.14% - 
NN-SGE 93.00% ± 2.00% 3.73 ± 1.53 

MLPGA+4 99.19% ± 0.08% a 11.67 ± 2.15 b 

Ionosphere 

NNC 90.34% - 
GE-BP 89.90% ± 3.16% - 

NN-SGE 87.00% ± 10.00% 3.53 ± 1.36 
MLPGA+4 96.73% ± 0.30% a 36.03 ± 12.08 b 

Sonar 
NN-SGE [1] 78.00% ± 5.00% 4.23 ± 1.33 
MLPGA+4 93.79% ± 0.41% a 29.47 ± 16.11 b 

Heart 
GE-BP 80.20% ± 5.24% - 

MLPGA+4 88.50% ± 0.30% a 26.57 ± 14.78 b 

Iris 
GE-BP 96.60 ± 6.14% - 

MLPGA+4 98.87% ± 0.33% a 13.10 ± 11.30 b 
a. Mean accuracy rate from 3-fold cross-validation. b Average of the nº of neurons in MLP 

The best classification performance was achieved at 
different generations for each dataset, considering the 30 
independent runs, as depicted in Fig. 6. 

 
Fig. 6. The boxplots with the distribution of generations needed to achieve the 
best set of hyper-parameters. The triangles show the average number of 
generations. The Ionosphere dataset required fewer generations to achieve a 
good set of hyper-parameters, with an average of 11. On the other hand, BCWD 
dataset required 15.33 generations, on average. 
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The Ionosphere dataset required an average of 11 
generations to reach the best set of hyper-parameters, the 
smallest number of generations among those considered in this 
work. The standard deviation of 5.36 is similar to the other 
datasets, except for the BCWD dataset, which presented 4.03. 
The BCWD dataset required an average of 15.33 generations to 
achieve the best set of hyper-parameters, the largest number of 
generations among the five datasets. 

The results show that although some of the 30 independent 
runs achieved the best set of hyper-parameters before the 20th 
generation, the reduction in the number of generations 
drastically reduces the probability to reach this optimal set. This 
means that to keep a probability to achieve the best set of hyper-
parameters in 90%, it is necessary to evolve at least to the 17th 
generation in the Ionosphere dataset and 20th generation in the 
BCWD dataset. 

Table IV presents the scaled importance of the top 5 hyper-
parameters by each dataset. The hyper-parameters in bold are 
the ones proposed to be included in the optimization process by 
this work. 

TABLE IV.  SCALED IMPORTANCE OF THE TOP 5 HYPER-PARAMETERS BY 
DATASET 

Dataset Hyper-parameter Scaled Importance 

BCWD 

# Neurons Hidden Layer 3 1.0000 
# Hidden Layers 0.5075 
Input Dropout Ratio 0.4693 
# Neurons Hidden Layer 4 0.4615 
# Neurons Hidden Layer 2 0.4582 

Sonar 

Input Dropout Ratio 1.0000 
Initial Weight Distribution 0.7384 
# Hidden Layers 0.6003 
# Neurons Hidden Layer 1 0.5671 
Activation Function 0.3091 

Ionosphere 

# Neurons Hidden Layer 5 1.0000 
Initial Weight Scale 0.8349 
# Hidden Layers 0.7985 
Initial Weight Distribution 0.5723 
Activation Function 0.5376 

Heart 

Activation Function 1.0000 
# Hidden Layers 0.8232 
# Neurons Hidden Layer 5 0.6943 
# Neurons Hidden Layer 1 0.4752 
Initial Weight Scale 0.4723 

Iris 

Input Dropout Ratio 1.0000 
# Hidden Layers 0.2657 
# Neurons Hidden Layer 3 0.1064 
# Total Neurons 0.0749 
Activation Function 0.0684 

 

Analyzing the hyper-parameters effect in the BCWD dataset, 
the input dropout ratio hyper-parameter is the third most 
important factor to explain the mean accuracy rate. The boxplot 
depicted in Fig. 7 shows that the MLP that used the input 
dropout ratio hyper-parameter in the interval (0.2, 0.3] presented 
the highest median of the mean accuracy rate. This optimal 
range gives an increase of 1.1% in the mean accuracy rate when 
compared with the worst interval (0.7, 0.8]. Contrasting with its 
neighbor intervals, (0.1, 0.2] and (0.3, 0.4], the p-values of the 
Mann-Whitney U test are inferior to 0.1%. This value shows that 
the optimal interval is statistically superior to its neighbors. The 
null hypothesis of this statistical test is that the groups have the 

same distribution. Although 1,1% may appear to be minor, some 
problems that require high precision may benefit from the 
optimization of this hyper-parameter. 

 
Fig. 7. The boxplot of the mean accuracy rate by input dropout ratio in the 
BCWD dataset shows an optimal range in the interval (0.2, 0.3], with an 
increase of 1.1% in the mean accuracy rate when compared with the worst 
interval (0.7, 0.8]. 

In the Sonar dataset, the input dropout ratio and the initial 
weight distribution are the 2 most relevant factors related to the 
mean accuracy rate. The boxplot presented in Fig. 8 shows that 
the MLP that used the input dropout ratio hyper-parameter in the 
interval (0.3, 0.4] presented the highest median of the mean 
accuracy rate. This optimal range presents an increase of 10.5% 
in the mean accuracy rate when compared with the worst 
interval (0.7, 0.8]. The comparison with its neighbor intervals 
using the Mann-Whitney U test shows the range (0.3, 0.4] is 
statistically superior, considering a significance level of 5%. 
Unlike the BCWD dataset, the dispersion of the mean accuracy 
rate, represented by the size of the boxplot, increases when the 
input dropout ratio rises.  

 
Fig. 8. The boxplot of the mean accuracy rate by input dropout ratio in the 
Sonar dataset shows an optimal range in the interval (0.3, 0.4], with an increase 
of 10.5% in the mean accuracy rate when compared with the worst interval (0.7, 
0.8]. 

Analyzing the initial weight distribution in the Sonar dataset, 
Uniform Adaptive [26] presented the highest median of the 
mean accuracy rate (Fig. 9). This distribution showed an 
estimated increase of 3.6% when compared with the Gaussian 
distribution. Also, the Uniform Adaptive mean accuracy rate 
standard deviation is 44% smaller than Uniform and 61% 
smaller than the Gaussian distribution. Considering a 
significance level of 5%, Uniform Adaptive presented a mean 
accuracy rate statistically superior to the Gaussian and Uniform 
distributions. 
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In the Ionosphere dataset, the initial weight scale and the 
initial weight distribution are the second and fourth most 
relevant factors related to the mean accuracy rate. After 
grouping all the statistically equal intervals, the MLP which 
used the initial weight scale in the range (0.5, 0.9] presented an 
estimated increase of 0.2% in the mean accuracy rate when 
compared with the MLP that used the worst interval (1.3, 1.5] 
(Fig. 10). Considering a significance level of 5%, the optimal 
interval, (0.5, 0.9], is statistically superior to the other ranges. 

 
Fig. 9. The boxplot of the mean accuracy rate by initial weight distribution in 
the Sonar dataset shows Uniform Adaptive as the optimal distribution, with an 
increase of 3.6% in the accuracy performance when compared with the 
Gaussian distribution. 

 
Fig. 10. The boxplot of the mean accuracy rate by initial weight scale intervals 
in the Ionosphere dataset shows an optimal range in the interval (0.5, 0.9], with 
an increase of 0.2% in the mean accuracy rate when compared with the worst 
interval (1.3, 1.5]. 

Also, in the Ionosphere dataset, the MLP which achieved the 
higher median of the mean accuracy rate had the Uniform 
Adaptive as the initial weight distribution (Fig. 11). The optimal 
statistical distribution presented an estimated increase of 0.5% 
when compared with the Gaussian distribution. When compared 
with the other distributions using the Mann-Whitney U test, the 
p-value was inferior to 0.1%, evidencing Uniform Adaptive is 
statistically superior to the Gaussian and Uniform distributions. 

In the Heart dataset, the input dropout ratio is the 5th most 
relevant factor related to the mean accuracy rate. After grouping 
all the statistically equal intervals, the MLP which used the 
initial weight scale in the range (0.5, 0.9] presented an estimated 
increase of  0.4% in the mean accuracy rate when compared with 
the MLP that used the worst interval (1.1, 1.2] (Fig. 12). 
Considering a significance level of 5%, the optimal interval, 
(0.5, 0.9], is statistically equal to the interval (1.0, 1.1] and 
statistically superior to the other ranges. 

Finally, in the Iris dataset, the input dropout ratio is the most 
relevant factor related to the mean accuracy rate. After grouping 
all the statistically equal intervals, the MLP which used the input 
dropout ratio in the range (0.0, 0.1] presented an estimated 
increase of 15.2% in the mean accuracy rate when compared 
with the MLP that used the worst interval (0.6, 0.8] (Fig. 13). 
Considering a significance level of 5%, the optimal interval, 
(0.0, 0.1], is statistically superior to the other ranges. Also, the 
optimal interval presented the smaller standard deviation of the 
mean accuracy rate (0.026). It is 4.31 times smaller than the 
standard deviation of the mean accuracy rate of the worst 
interval (0.113). 

 
Fig. 11. The boxplot of the mean accuracy rate by initial weight distribution in 
the Ionosphere dataset shows Uniform Adaptive as the optimal distribution, 
with an increase of 0.5% in the mean accuracy rate when compared with the 
Gaussian distribution. 

 
Fig. 12. The boxplot of the mean accuracy rate by initial weight scale intervals 
in the Heart dataset shows an optimal range in the interval (0.5, 0.9], with an 
increase of 0.4% in the mean accuracy rate when compared with the worst 
interval (1.1, 1.2]. 

 
Fig. 13. The boxplot of the mean accuracy rate by input dropout ratio intervals 
in the Iris dataset shows an optimal range in the interval (0.0, 0.1], with an 
increase of 15.2% in the mean accuracy rate when compared with the worst 
interval (0.6, 0.8]. 
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V. CONCLUSIONS AND FUTURE WORKS 
This work presented the addition of hyper-parameters for 

weights initialization and regularization to be optimized 
simultaneously with topology and learning parameters of an 
MLP. It also proposed analyzing how these hyper-parameters 
affect the classification performance. 

The results from the five datasets show the proposed method 
allows training an MLP with better performance in classification 
task when compared with similar works. Moreover, the standard 
deviation of the mean accuracy rate presented by the proposed 
method is the smallest, demonstrating the stability of the 
approach. 

In the five datasets, the added hyper-parameters of weights 
initialization and regularization are found between the top 5 
most relevant hyper-parameters to explain the accuracy rate of 
the MLP on classification tasks. The greatest difference in the 
mean accuracy rate occurred in Iris dataset with an increase of 
more than 15% from the worst to the best interval of input 
dropout ratio. Even with the higher number of neurons in all 
datasets, the MLP with the proposed method presented the 
highest accuracy rate in 3-fold cross-validation, showing the 
importance of the regularization hyper-parameters in controlling 
overfit.  

The initial weight distribution and initial weight scale are 
found between the top 5 most relevant hyper-parameters in 3 out 
of 5 datasets. In the Sonar dataset, the initial weight distribution 
optimization increased the mean accuracy rate by 3,6%. This 
result shows the importance of this hyper-parameter to be 
included in the optimization process.  

Due to the peculiarities of each problem, each dataset 
benefited from a different set of hyper-parameters and achieved 
the best set in different generations. Therefore, a pattern that 
could be used to make the search by GA more efficient was not 
found. On the other hand, it shows how important it is to 
optimize these hyper-parameters in each dataset with a 
minimum of 20 generations to achieve high performance. 

Future extensions to this work include adding the hidden 
layer dropout hyper-parameter to be optimized with the ones 
proposed herein and analyzing the performance of the 
MLPGA+4 in regression tasks. The correlation between the 
hyper-parameters themselves is to be analyzed to search for a 
pattern that may possibly be used to reduce the hyper-parameters 
space of search, thus reducing the time needed to find the 
optimal set of hyper-parameters. 
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