
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Extending MLP ANN hyper-parameters Optimization
by using Genetic Algorithm

Fernando Itano
Dept. Electronic Systems Engineering

University of São Paulo
São Paulo, Brazil
itanofe@lsi.usp.br

Miguel Angelo de Abreu de Sousa
Federal Institute of Education, Science and

Technology of São Paulo
Sao Paulo, Brazil

angelo@ifsp.edu.br

Emilio Del-Moral-Hernandez
Dept. Electronic Systems Engineering

University of São Paulo
São Paulo, Brazil
emilio@lsi.usp.br

Abstract—Optimizing the hyper-parameters of a multi-layer
perceptron (MLP) artificial neural network (ANN) is not a trivial
task, and even today the trial-and-error approach is widely used.
Many works have already presented using the genetic algorithm
(GA) to help in this optimization search including MLP topology,
weights, and bias optimization. This work proposes adding hyper-
parameters for weights initialization and regularization to be
optimized simultaneously with the usually MLP topology and
learning hyper-parameters. It also analyses which hyper-
parameters are more correlated with classification performance,
allowing a reduction in the search space, which decreases the time
and computation needed to reach a good set of hyper-parameters.
Results achieved with public datasets reveal an increase in
performance when compared with similar works. Also, the hyper-
parameters related to weights initialization and regularization are
among the top 5 most relevant hyper-parameters to explain the
accuracy performance in all datasets, showing the importance of
including them in the optimization process.

Keywords—artificial neural network, multi-layer perceptron,
MLP, genetic algorithm, GA, hyper-parameters

I. INTRODUCTION
Once each problem has specificities about its data, to choose

the optimal hyper-parameters of an MLP usually involves a trial-
and-error approach, which consumes time, computational
resources and requires the researcher to have great experience to
properly tune the MLP. It is thus highly desirable to have a
method to automatically search for the optimal hyper-
parameters efficiently. By hyper-parameters we mean those
responsible for defining the topology, learning, weights
initialization and regularization options of an MLP.

GA has been widely used as an alternative to the classical
Back-propagation (BP) algorithm [1] to tune the set of weight
values of MLP with fixed neural topology such as in [2] [3].
Some works studied the use of GA to find only the MLP
topology, i.e., the number of hidden layers and the number of
neurons in each layer, as in [4]. Others use GA to search for the
optimal values of MLP weights together with its topology,
instead of using the classical BP, as in [5]. GA has also been
used to tune MLP weights and topology such as in [6] [7], and
to compose a hybrid training strategy with BP [8]. This hyper-
parameter optimizations certainly increases the performance of
the MLP. However, there are other essential hyper-parameters,

such as weights initialization and regularization that also need to
be tuned because they can improve the MLP performance.

The weights initialization hyper-parameters used in this
work control the statistical distribution and the scale of initial
weights. Poorly initialized weights may prevent to achieve a
good performance, either leading to a slower training and
requiring more epochs to train or to a faster training but with an
increased risk of being trapped in a local minimum [9]. On the
other hand, an optimized weight initialization will allow the
MLP back-propagation to efficiently decrease the error through
the epochs, reaching better performance.

The regularization hyper-parameters are especially essential
to improve the generalization of a network with limited sample
size and a large number of parameters [10]. With a large number
of parameters, the MLP can memorize the training instances
exactly and achieve a supposed error-free perfect fit (Fig. 1),
compromising the capability of the network to generalize the
acquired knowledge on prediction for the examples not used in
training.

Fig. 1. The circle dots represent the training set and the diamond dots the test
set. The non-optimized regularization hyper-parameters can result in the overfit
of the MLP, i.e. with loss of generalization capability and higher error on the
test set (fitting curve on left chart). The regularization method is especially
important with limited sample size and a large number of parameters, leading
to a better generalization and lower error on the test set (fitting curve on right
chart). The symbols are in the same position on both charts.

To improve the classification performance, this work
proposes adding the weights initialization and the regularization
hyper-parameters to be optimized simultaneously with the MLP
topology and learning hyper-parameters by using a GA. The
proposed method named MLPGA+4 because of the 4 hyper-
parameters categories to be optimized simultaneously.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

0 2 4 6 8 1 0

Overfit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

0 2 4 6 8 1 0

Good fit
Optimized Regularization

hyper parameters
Non-optimized Regularization

hyper parameters

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

Moreover, the relationship between these added hyper-
parameters and the classification performance will be analyzed
to understand the effects of these hyper-parameters on the
classification performance. It will allow identifying hyper-
parameters space regions where best classification performance
is achieved. With that, it will also be possible to restrict the
search space and to develop a more efficient GA, which requires
less time and computational resources to find a good set of
hyper-parameters.

The remainder of this paper is organized as follows: Section
II briefly presents some general concepts about MLP networks
and GA. Section III details the methodology developed,
followed by the experimental results in Section IV. Section V
presents the conclusions and future works.

II. GENERAL CONCEPTS AND RELATED WORKS
This section presents some general concepts of MLP and the

hyper-parameters we propose adding to the optimization
process. General concepts of GA will be presented as well as the
modifications made to optimize categorical, integer and real
value hyper-parameters simultaneously. The Related Works
section presents other methods of MLP hyper-parameter
optimization.

A. Multilayer Perceptron hyper-parameter effects
MLP is one of the most widely used architectures of MLP

due to its versatility in classification and regression problems
and its universal function approximation characteristic [1] [11]
[12] [13]. An example of one MLP is presented in Fig. 2. The
small circles represent the input and output neurons in their
respective layers, and the large circles represent the neurons
present in the hidden layers. This structure is also called
topology of the MLP. The connections between the neurons,
also known as synaptic weights, are represented by arrows and
contains the knowledge of the MLP. This knowledge is acquired
during the training phase, usually by using the BP algorithm,
when the MLP learns from examples. Below we present the
conceptual effects of the MLP hyper-parameters used in this
work.

Fig. 2. Example of an MLP with 3 inputs, 3 hidden layers; the first with 3
neurons, the second with 2 neurons and the third with 3 neurons and an output
layer with 2 neurons.

1) Topology hyper-parameters
The increase in the number of neurons, allocated in one or

more hidden layers, allows an MLP mapping more complex
relationships between input and output. However, a great
number of neurons increases the time and computation needed
to train the network and raises the probability of overfitting. On
the other hand, fewer neurons and fewer hidden layers limit the
MLP to map only simpler relationships.

Even today, there is no established rule to define the number
of neurons and hidden layers, so the trial-and-error approach is
widely used.

2) Learning Rate hyper-parameters
There are several optimization methods to properly adjust

the synaptic weights. The Gradient Descent was the first one and
it was necessary to manual tune the learning rate, a critical
hyper-parameter to obtain high performance. More recently
some methods with dynamic adaptation of the learning rate were
proposed, such as ADADELTA [14], used in this work. This
method dynamically changes the learning rate to optimize the
synaptic weights faster and without being trapped in local
minima. It requires two hyper-parameters to be set: 1) r
represents a decay constant, similar to that used in the
momentum method, 2) e is a constant to avoid the division by
zero. Also, it appears to be robust to different topologies,
datasets and the other hyper-parameters selection [14].

3) Synaptic Weights Initialization hyper-parameters
The speed and convergence of the learning process of an

MLP, as in many multidimensional optimization problems, is
strongly influenced by the initial condition [15] [16]. In an MLP,
these initial states are given by the initial synaptic weights. In
this work, we used the hyper-parameters that allow the initial
values to be sampled from different probabilistic distributions,
such as Gaussian and Uniform, and different scales, as depicted
in Fig. 3. Thus, we allow each data set to obtain the optimal
initial condition to increase the classification performance.

Fig. 3. Initial weight distribution comparison: Gaussian and Uniform with
scales of 0.5 and 1.5.

4) Regularization hyper-parameters
With the increase of computational power, it is easy to create

an MLP with several layers and a large number of neurons in
each layer. However, this large number of parameters may lead
to overfitting, i.e., the generalization capability loss [10]. The
regularization hyper-parameters considered in this work are
used to preserve the generalization capability in 2 main ways:

a) Input dropout ratio
The input dropout ratio constrains the online optimization so

that during forward propagation, for a given training example,
each neuron in the network suppresses its activation with
probability P [17].

Input Layer
Hidden Layers

Output Layer

2018 International Joint Conference on Neural Networks (IJCNN)

b) l1 and l2
These hyper-parameters modify the loss function so as to

minimize loss. l1 constraints the absolute value of the synaptic
weights, while l2 constrains the sum of the squared weights;
both may cause synaptic weights to become zero, also known as
pruning process. If l1 and l2 hyper-parameters are well adjusted,
they reduce the number of synaptic weights, appropriately
reducing the overfit effect. On the other hand, if l1 and l2 hyper-
parameters are poorly optimized, too many parameters may
become zero, oversimplifying the acquired knowledge, or too
little parameters may become zero, increasing the overfit effect.

B. Genetic Algorithm optimizing an MLP
GA is one of the evolutionary computation search algorithms

based on the natural evolutionary theory [18]. It states that
individuals who are best adapted to their environment are more
likely to survive and to reproduce. The next generation
represented by their offspring will inherit a mix of the parents’
characteristics, and generate individuals who are enhanced and
worse. The enhanced ones will be even more likely to survive
and to reproduce whereas the worse ones will disappear. After
several generations in this process, the population is expected to
evolve and find an individual whose characteristics allow it to
be the best-adapted individual.

The main characteristics of GA include (1) robustness to
discontinuities of the fitness function because GA does not
require the fitness function to have a derivative, (2) robustness
to local minima due to its global search characteristic and (3)
directed search which does not require exploring the complete
solutions space. The following are the details on using GA for
MLP hyper-parameters optimization.

1) Fitness Function
A fitness function calculates a measure that allows assessing

how adapted an individual is to the environment. This metric is
used to direct the search for the characteristics that will result in
a better-adapted individual, i.e., with better performance in a
task. In this paper context, we defined the fitness function as the
accuracy rate in classification tasks.

2) Chromosomic Representation
The binary chromosomic representation [18] is the most

widely used representation and consists in encoding the
information in genes that can assume zero and one values. To
avoid one of its caveats, like the Hamming Abyss, this work
used a mixed representation in which each gene can assume
integer values for categorical and discrete characteristics and
real values for continuous characteristics.

3) Initial Population
The initial population contains all the individuals that will be

assessed by the fitness function and submitted to the genetic
operators. Usually, it is generated by random sampling, but in
this work, additional care was taken to ensure that there are no
replicate individuals at the beginning of the optimization
process.

4) Genetic Operators
a) Selection

The selection operator chooses 2 individuals from the
population based on its fitness function value to submit to cross-

over operator. We here used the tournament selection with 2
individuals. These 2 individuals are randomly sampled from the
population and their fitness function values are compared, the
one with the highest value is then selected. This process is
repeated for another random sample of 2 individuals and the
winner is also selected. These 2 selected winner individuals are
then submitted to the cross-over operator.

b) Cross-over
This operator exchanges the chromosomic information

between 2 individuals to generate offspring with mixed
characteristics. We here used the uniform cross-over, which
consists in sampling a random variable from the Bernoulli
distribution [19] with p = 0.5 for each gene. Then defining which
parent will send its genes to the offspring based on this sample.
For example, the first offspring will inherit the genes from
parent #1 if the random variable value is “0” and inherit the
genes from parent #2 if the random variable value is “1”. The
second offspring will inherit the opposing genes. An example is
depicted in Fig. 4.

The probability of the cross-over to occur was defined as
80%; otherwise, the selected individuals proceed to the next
operator without modifications.

Once the chromosomic representation adopted here contains
categorical, discrete and continuous genes, instead of the widely
used binary representation, the cross-over operator was
customized to properly exchange the genetic information, as
shown below.

Fig. 4. Example of a uniform cross-over – the parent’s genes inheritance are
stochastically defined by sampling from a Bernoulli distribution. The genes A,
B, C and D, each one representing one characteristic, are exchanged or not
between 2 parents. The 2 offspring will inherit a combination of parent’s
characteristics.

c) Mutation
The mutation operator introduces a stochastic factor to the

artificial evolution algorithm and randomly changes the
information contained in a gene. Here, the probability of a
mutation to occur was defined as 20%. Also, the mutation and
the cross-over operators occur independently.

C. Related Works
There are some works optimizing the MLP by using GA with

different strategies.

The G-Prop method, proposed by [20], uses GA to select the
initial weights and optimize the number of neurons in a single
hidden layer. This is a hybrid approach where the synaptic
weights are initialized by a GA and optimized by BP algorithm.
The NNC method, proposed by [21], uses grammatical
evolution to encode the network topology and the synaptic
weights. The GE-BP method, proposed by [22], also uses

A1Parent	#1

Parent	#2

B1 C1 D1

A2 B2 C2 D2

Cross-over	sample 0 1 1 0

A1Offspring	#1

Offspring	#2

B2 C2 D1

A2 B1 C1 D2

2018 International Joint Conference on Neural Networks (IJCNN)

grammatical evolution to design the MLP topology but uses BP
for training. The NN-SGE method, proposed by [4], uses
structured grammatical evolution to optimize both topology and
synaptic weights.

The proposed method, MLPGA+4, optimizes not only the
topology and the learning rate but initial weights and
regularization hyper-parameters also. Consequently, it is
expected the resulting MLP is better optimized and have a
higher accuracy performance in classification.

III. METHOD
The classification performance of the proposed method and

the effect of these hyper-parameters on accuracy ratio was
assessed by using five public datasets.

A. Datasets
Five public datasets from UCI Machine Learning Repository

were used with no pre-processing or data augmentation
methodologies, i.e., the datasets are used as obtained. The
features column shows how many inputs are available and the
instances column shows how many observations from each
category each dataset contains.

TABLE I. UCI DATASETS USED IN EXPERIMENTS

Dataset Features Instances a
Breast Cancer Wisconsin Diagnostic
(BCWD) 30 357+212=569

Ionosphere (Iono) 34 225+126=351
Connectionist Bench - Sonar, Mines
vs. Rocks (Sonar) 60 97+111=208

Heart Disease (Heart) 14 164+139=303

Iris 4 50+50+50=150
a. Number of observations in each category and the total

B. MLP Neural Network hyper-parameters
Table II presents the hyper-parameters to be optimized by

GA, the range of permitted values and gene locations. The
numbers in parenthesis represent the types of genes: (1)
Categorical, (2) Discrete and (3) Continuous. The hyper-
parameters this work proposes to include in the optimization
process, weights initialization and regularization, are presented
in genes 1 to 2 and 12 to 14, respectively.

TABLE II. HYPER-PARAMETERS TO BE OPTIMIZED BY GA, THE RANGE
OF PERMITTED VALUES AND GENE LOCATIONS

Hyper-parameter (type of gene) Range of permitted
values Gene

Initial Weight Distr. (1)
1 – Gaussian
2 – Uniform
3 – Uniform Adaptive

1

Initial Weight Scale (3) [0.5, 1.5] 2

Nº of hidden layers (2) [1, 5] 3

Nº of neurons in hidden layer 1 (2) [1, 16] 4

Nº of neurons in hidden layer 2 (2) [1, 16] 5

Nº of neurons in hidden layer 3 (2) [1, 16] 6

Nº of neurons in hidden layer 4 (2) [1, 16] 7

Nº of neurons in hidden layer 5 (2) [1, 16] 8

Activation Function (1)
1 – Tanh
2 – Rectifier
3 – Maxout

9

Adaptive learning rate: time decay
factor – ALRTD (3) [0.985, 0.995] 10

Adaptive learning rate: smoothing
factor – ALRSM (3) [1e-9, 1e-7] 11

Input dropout ratio (3) [0.0, 0.8] 12

l1 (3) [0.0, 1e-3] 13

l2 (3) [0.0, 1e-3] 14

Fig. 5. The flowchart diagram of MLP hyper-parameters being optimized by GA. Here, the weights initialization and regularization hyper-parameters are encoded
in a chromosomic vector to be optimized by GA, simultaneously with network structure (topology) and learning hyper-parameters.

Initial
Population

Population
Evaluation

Hyper
parameters

selected

Mutation

Yes

No

3 Genetic Algorithm Hyper parameter tuning

Genetic Operators

Selection

Crossover

Stop?

ANN MLP Approach

Input
Layer Hidden Layers Output

Layer

1 Hyper parameter encoding2

Weights Initialization

Network Structure

Learning Parameters

Regularization Parameters

2018 International Joint Conference on Neural Networks (IJCNN)

The selected method to optimize the synaptic weights and
biases is BP with adaptive learning rate and a train limited by
1,000 epochs. Also, a 3-fold cross-validation technique was used
to assess the generalization capabilities of the MLP. The 3-fold
was chosen due to datasets number of instances limitation, since
training with 90% of limited instances may increase the risk of
overfitting.

C. GA Setup
The mixed chromosomic representation was adopted to

allow the GA to evolve with different types of genes. On
creating the initial population, the categorical and discrete genes
were sampled with equal probabilities for each category or
integer number. The continuous genes assumed a real value
from a uniform distribution within the range of permitted values.
The details about how the GA operators works are described in
section II.B.4.

The fitness function adopted calculates the mean accuracy
rate of the validation sets of a 3-fold cross-validation setup. The
initial population was defined to contain 100 individuals, and the
number of generations is determined as 20. The elitism
technique was adopted in 5%. This method, presented in Fig. 5,
was applied to 30 independent runs, generating 60,000 trained
MLP for each dataset.

To assess which of the hyper-parameters are more correlated
with the classification performance and to quantify its effects, a
non-linear random forest model [23] was fitted to the data. This
model was chosen due to his ability to calculate the variable
importance. So, we can easily identify which hyper-parameter
has more influence in classification performance. The data used
in the model contains 60,000 observations of each dataset,
resulting from a population of 100 individuals from 20
generations and 30 independent runs. The MLP hyper-
parameters setup were the inputs, and the mean accuracy rate of
the 3-fold cross-validation was the target.

The importance of each hyper-parameter and its effects were
analyzed graphically and statistically using the Mann-Whitney
U test [24], which is a well established nonparametric test used
to compare the data distribution of 2 groups. The statistical
distribution of the results will be presented in a boxplot graphic
[25], which allows a quick comparison between groups, such as
median, 1st and 3rd quartiles, and dispersion, and visually
identifying patterns. The essays were conducted on a Linux
Ubuntu 16.04 operational system with R 3.4.1 statistical
computing platform and H2O machine learning library version
3.16.0.2.

IV. EXPERIMENTAL RESULTS
Table III presents the classification performance of the best

MLP after 20 generations in each of the 30 independent runs on
each dataset with its respective number of neurons using the
MLPGA+4, and the results from similar works. The mean
accuracy rate and the number of neurons are presented with their
respective standard deviation (±).

Considering the BCWD dataset, the proposed method shows
a slightly higher accuracy rate in classifying cancer as benign or
malign when compared with the G-Prop method, but with a
considerably lower standard deviation, evidencing better

stability in achieving this performance. Conversely, the
topology of the proposed method shows a substantially higher
number of neurons, among those who presented this
information.

Analyzing the Ionosphere dataset results, MLPGA+4
presented a considerably higher accuracy rate when compared
with NNC method. As the previous datasets, the standard
deviation of the proposed method remains the smallest and the
number of neurons, considerably higher.

In the Sonar dataset, the proposed approach shows an
increase of 15.79% on accuracy rate when compared with NN-
SGE, and with a considerably lower standard deviation. Yet
again with a noticeably higher number of neurons.

Analyzing the Heart dataset, MLPGA+4 presented an
increase of 8.30% on accuracy rate when compared with the GE-
BP method. Also presented a considerably lower standard
deviation.

Finally, considering the Iris dataset, the proposed method
shows a slightly higher accuracy rate when compared with the
GE-BP method, and a considerably lower standard deviation.

TABLE III. CLASSIFICATION PERFORMANCE AND Nº OF NEURONS

Dataset Method Accuracy Neurons

BCWD

G-Prop 99.00% ± 0.50% 3.20 ± 0.8
NNC 95.44% -

GE-BP 95.90% ± 3.14% -
NN-SGE 93.00% ± 2.00% 3.73 ± 1.53

MLPGA+4 99.19% ± 0.08% a 11.67 ± 2.15 b

Ionosphere

NNC 90.34% -
GE-BP 89.90% ± 3.16% -

NN-SGE 87.00% ± 10.00% 3.53 ± 1.36
MLPGA+4 96.73% ± 0.30% a 36.03 ± 12.08 b

Sonar
NN-SGE [1] 78.00% ± 5.00% 4.23 ± 1.33
MLPGA+4 93.79% ± 0.41% a 29.47 ± 16.11 b

Heart
GE-BP 80.20% ± 5.24% -

MLPGA+4 88.50% ± 0.30% a 26.57 ± 14.78 b

Iris
GE-BP 96.60 ± 6.14% -

MLPGA+4 98.87% ± 0.33% a 13.10 ± 11.30 b
a. Mean accuracy rate from 3-fold cross-validation. b Average of the nº of neurons in MLP

The best classification performance was achieved at
different generations for each dataset, considering the 30
independent runs, as depicted in Fig. 6.

Fig. 6. The boxplots with the distribution of generations needed to achieve the
best set of hyper-parameters. The triangles show the average number of
generations. The Ionosphere dataset required fewer generations to achieve a
good set of hyper-parameters, with an average of 11. On the other hand, BCWD
dataset required 15.33 generations, on average.

2018 International Joint Conference on Neural Networks (IJCNN)

The Ionosphere dataset required an average of 11
generations to reach the best set of hyper-parameters, the
smallest number of generations among those considered in this
work. The standard deviation of 5.36 is similar to the other
datasets, except for the BCWD dataset, which presented 4.03.
The BCWD dataset required an average of 15.33 generations to
achieve the best set of hyper-parameters, the largest number of
generations among the five datasets.

The results show that although some of the 30 independent
runs achieved the best set of hyper-parameters before the 20th
generation, the reduction in the number of generations
drastically reduces the probability to reach this optimal set. This
means that to keep a probability to achieve the best set of hyper-
parameters in 90%, it is necessary to evolve at least to the 17th
generation in the Ionosphere dataset and 20th generation in the
BCWD dataset.

Table IV presents the scaled importance of the top 5 hyper-
parameters by each dataset. The hyper-parameters in bold are
the ones proposed to be included in the optimization process by
this work.

TABLE IV. SCALED IMPORTANCE OF THE TOP 5 HYPER-PARAMETERS BY
DATASET

Dataset Hyper-parameter Scaled Importance

BCWD

Neurons Hidden Layer 3 1.0000
Hidden Layers 0.5075
Input Dropout Ratio 0.4693
Neurons Hidden Layer 4 0.4615
Neurons Hidden Layer 2 0.4582

Sonar

Input Dropout Ratio 1.0000
Initial Weight Distribution 0.7384
Hidden Layers 0.6003
Neurons Hidden Layer 1 0.5671
Activation Function 0.3091

Ionosphere

Neurons Hidden Layer 5 1.0000
Initial Weight Scale 0.8349
Hidden Layers 0.7985
Initial Weight Distribution 0.5723
Activation Function 0.5376

Heart

Activation Function 1.0000
Hidden Layers 0.8232
Neurons Hidden Layer 5 0.6943
Neurons Hidden Layer 1 0.4752
Initial Weight Scale 0.4723

Iris

Input Dropout Ratio 1.0000
Hidden Layers 0.2657
Neurons Hidden Layer 3 0.1064
Total Neurons 0.0749
Activation Function 0.0684

Analyzing the hyper-parameters effect in the BCWD dataset,
the input dropout ratio hyper-parameter is the third most
important factor to explain the mean accuracy rate. The boxplot
depicted in Fig. 7 shows that the MLP that used the input
dropout ratio hyper-parameter in the interval (0.2, 0.3] presented
the highest median of the mean accuracy rate. This optimal
range gives an increase of 1.1% in the mean accuracy rate when
compared with the worst interval (0.7, 0.8]. Contrasting with its
neighbor intervals, (0.1, 0.2] and (0.3, 0.4], the p-values of the
Mann-Whitney U test are inferior to 0.1%. This value shows that
the optimal interval is statistically superior to its neighbors. The
null hypothesis of this statistical test is that the groups have the

same distribution. Although 1,1% may appear to be minor, some
problems that require high precision may benefit from the
optimization of this hyper-parameter.

Fig. 7. The boxplot of the mean accuracy rate by input dropout ratio in the
BCWD dataset shows an optimal range in the interval (0.2, 0.3], with an
increase of 1.1% in the mean accuracy rate when compared with the worst
interval (0.7, 0.8].

In the Sonar dataset, the input dropout ratio and the initial
weight distribution are the 2 most relevant factors related to the
mean accuracy rate. The boxplot presented in Fig. 8 shows that
the MLP that used the input dropout ratio hyper-parameter in the
interval (0.3, 0.4] presented the highest median of the mean
accuracy rate. This optimal range presents an increase of 10.5%
in the mean accuracy rate when compared with the worst
interval (0.7, 0.8]. The comparison with its neighbor intervals
using the Mann-Whitney U test shows the range (0.3, 0.4] is
statistically superior, considering a significance level of 5%.
Unlike the BCWD dataset, the dispersion of the mean accuracy
rate, represented by the size of the boxplot, increases when the
input dropout ratio rises.

Fig. 8. The boxplot of the mean accuracy rate by input dropout ratio in the
Sonar dataset shows an optimal range in the interval (0.3, 0.4], with an increase
of 10.5% in the mean accuracy rate when compared with the worst interval (0.7,
0.8].

Analyzing the initial weight distribution in the Sonar dataset,
Uniform Adaptive [26] presented the highest median of the
mean accuracy rate (Fig. 9). This distribution showed an
estimated increase of 3.6% when compared with the Gaussian
distribution. Also, the Uniform Adaptive mean accuracy rate
standard deviation is 44% smaller than Uniform and 61%
smaller than the Gaussian distribution. Considering a
significance level of 5%, Uniform Adaptive presented a mean
accuracy rate statistically superior to the Gaussian and Uniform
distributions.

2018 International Joint Conference on Neural Networks (IJCNN)

In the Ionosphere dataset, the initial weight scale and the
initial weight distribution are the second and fourth most
relevant factors related to the mean accuracy rate. After
grouping all the statistically equal intervals, the MLP which
used the initial weight scale in the range (0.5, 0.9] presented an
estimated increase of 0.2% in the mean accuracy rate when
compared with the MLP that used the worst interval (1.3, 1.5]
(Fig. 10). Considering a significance level of 5%, the optimal
interval, (0.5, 0.9], is statistically superior to the other ranges.

Fig. 9. The boxplot of the mean accuracy rate by initial weight distribution in
the Sonar dataset shows Uniform Adaptive as the optimal distribution, with an
increase of 3.6% in the accuracy performance when compared with the
Gaussian distribution.

Fig. 10. The boxplot of the mean accuracy rate by initial weight scale intervals
in the Ionosphere dataset shows an optimal range in the interval (0.5, 0.9], with
an increase of 0.2% in the mean accuracy rate when compared with the worst
interval (1.3, 1.5].

Also, in the Ionosphere dataset, the MLP which achieved the
higher median of the mean accuracy rate had the Uniform
Adaptive as the initial weight distribution (Fig. 11). The optimal
statistical distribution presented an estimated increase of 0.5%
when compared with the Gaussian distribution. When compared
with the other distributions using the Mann-Whitney U test, the
p-value was inferior to 0.1%, evidencing Uniform Adaptive is
statistically superior to the Gaussian and Uniform distributions.

In the Heart dataset, the input dropout ratio is the 5th most
relevant factor related to the mean accuracy rate. After grouping
all the statistically equal intervals, the MLP which used the
initial weight scale in the range (0.5, 0.9] presented an estimated
increase of 0.4% in the mean accuracy rate when compared with
the MLP that used the worst interval (1.1, 1.2] (Fig. 12).
Considering a significance level of 5%, the optimal interval,
(0.5, 0.9], is statistically equal to the interval (1.0, 1.1] and
statistically superior to the other ranges.

Finally, in the Iris dataset, the input dropout ratio is the most
relevant factor related to the mean accuracy rate. After grouping
all the statistically equal intervals, the MLP which used the input
dropout ratio in the range (0.0, 0.1] presented an estimated
increase of 15.2% in the mean accuracy rate when compared
with the MLP that used the worst interval (0.6, 0.8] (Fig. 13).
Considering a significance level of 5%, the optimal interval,
(0.0, 0.1], is statistically superior to the other ranges. Also, the
optimal interval presented the smaller standard deviation of the
mean accuracy rate (0.026). It is 4.31 times smaller than the
standard deviation of the mean accuracy rate of the worst
interval (0.113).

Fig. 11. The boxplot of the mean accuracy rate by initial weight distribution in
the Ionosphere dataset shows Uniform Adaptive as the optimal distribution,
with an increase of 0.5% in the mean accuracy rate when compared with the
Gaussian distribution.

Fig. 12. The boxplot of the mean accuracy rate by initial weight scale intervals
in the Heart dataset shows an optimal range in the interval (0.5, 0.9], with an
increase of 0.4% in the mean accuracy rate when compared with the worst
interval (1.1, 1.2].

Fig. 13. The boxplot of the mean accuracy rate by input dropout ratio intervals
in the Iris dataset shows an optimal range in the interval (0.0, 0.1], with an
increase of 15.2% in the mean accuracy rate when compared with the worst
interval (0.6, 0.8].

2018 International Joint Conference on Neural Networks (IJCNN)

V. CONCLUSIONS AND FUTURE WORKS
This work presented the addition of hyper-parameters for

weights initialization and regularization to be optimized
simultaneously with topology and learning parameters of an
MLP. It also proposed analyzing how these hyper-parameters
affect the classification performance.

The results from the five datasets show the proposed method
allows training an MLP with better performance in classification
task when compared with similar works. Moreover, the standard
deviation of the mean accuracy rate presented by the proposed
method is the smallest, demonstrating the stability of the
approach.

In the five datasets, the added hyper-parameters of weights
initialization and regularization are found between the top 5
most relevant hyper-parameters to explain the accuracy rate of
the MLP on classification tasks. The greatest difference in the
mean accuracy rate occurred in Iris dataset with an increase of
more than 15% from the worst to the best interval of input
dropout ratio. Even with the higher number of neurons in all
datasets, the MLP with the proposed method presented the
highest accuracy rate in 3-fold cross-validation, showing the
importance of the regularization hyper-parameters in controlling
overfit.

The initial weight distribution and initial weight scale are
found between the top 5 most relevant hyper-parameters in 3 out
of 5 datasets. In the Sonar dataset, the initial weight distribution
optimization increased the mean accuracy rate by 3,6%. This
result shows the importance of this hyper-parameter to be
included in the optimization process.

Due to the peculiarities of each problem, each dataset
benefited from a different set of hyper-parameters and achieved
the best set in different generations. Therefore, a pattern that
could be used to make the search by GA more efficient was not
found. On the other hand, it shows how important it is to
optimize these hyper-parameters in each dataset with a
minimum of 20 generations to achieve high performance.

Future extensions to this work include adding the hidden
layer dropout hyper-parameter to be optimized with the ones
proposed herein and analyzing the performance of the
MLPGA+4 in regression tasks. The correlation between the
hyper-parameters themselves is to be analyzed to search for a
pattern that may possibly be used to reduce the hyper-parameters
space of search, thus reducing the time needed to find the
optimal set of hyper-parameters.

REFERENCES
[1] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd ed.).

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.
[2] J. Gill, B. Singh, and S. Singh, “Training back propagation neural

networks with genetic algorithm for weather forecasting,” in 2010 IEEE
8th International Symposium on Intelligent Systems and Informatics
(SISY), Subotica, 2010, pp. 465-469.

[3] K. Y. Huang, L. C. Shen, K. J. Chen and M. C. Huang, “Multilayer
perceptron with genetic algorithm for well log data inversion,” in 2013
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Melbourne, 2013, pp. 1544-1547.

[4] F. Assunção, N. Lourenço, P. Machado and B. Ribeiro, "Automatic
generation of neural networks with structured grammatical evolution," in
2017 IEEE Congress on Evolutionary Computation (CEC), San
Sebastian, 2017, pp. 1557-1564.

[5] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-Based Genetic Neural
Network,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp.
587-600, May 2005.

[6] S. Zhang, H. Wang, L. Liu, C. Du and J. Lu, “Optimization of neural
network based on genetic algorithm and BP,” in Proceedings of 2014
International Conference on Cloud Computing and Internet of Things,
Changchun, 2014, pp. 203-207.

[7] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and parameters
of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE
Transactions on Neural Networks, vol. 17, no. 1, pp. 69-80, Jan 2006.

[8] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[9] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” In G. Montavon, G.B. Orr, KR. Müller (eds) Neural
Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol
7700. Springer, Berlin, Heidelberg, 2012.

[10] G. N. Karystinos and D. A. Pados, "On overfitting, generalization, and
randomly expanded training sets," IEEE Transactions on Neural
Networks, vol. 11, no. 5, pp. 1050-1057, Sep 2000.

[11] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Math. Control Signals Systems 2 (1989) 303–314.

[12] C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, Oxford, 1995.

[13] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, pp. 359–
366, 1989.

[14] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,”
CoRR abs/1207.0151, 2012.

[15] H. Lari-Najafi, M. Nasiruddin, and T. Samad, "Effect of initial weights
on back-propagation and its variations," Conference Proceedings., IEEE
International Conference on Systems, Man and Cybernetics, Cambridge,
MA, pp. 218-219 vol.1, 1989.

[16] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th
International Conference on Machine Learning, in PMLR 28(3), pp.
1139-1147, 2013.

[17] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[18] M. Mitchell, An Introduction to Genetic Algorithm. MIT Press,
Cambridge, 1999.

[19] S. Ross, A First Course in Probability. Pearson, London, 2014.
[20] P. A. Castillo, J. J. Merelo, A. Prieto, V. Rivas, G. Romero, “G-Prop:

Global optimization of multilayer perceptrons using GAs,”
Neurocomputing 35, 2000, pp. 149-163.

[21] I. Tsoulos, D. Gavrilis, and E. Glavas, “Neural network construction and
training using grammatical evolution,” Neurocomputing, vol. 72, no. 1,
pp. 269–277, 2008.

[22] K. Soltanian, F. A. Tab, F. A. Zar, I. Tsoulos, “Artificial Neural Networks
Generation Using Grammatical Evolution,” 21st Iranian Conference on
Electrical Engineering (ICEE), Mashhad, pp. 1-5, 2013.

[23] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5-32,
2001.

[24] W. J. Conover, Practical Nonparametric Statistics, Willey, New York,
1999.

[25] McGill, R., Tukey, J., and Larsen, W, "Variations of Box Plots,” The
American Statistician, 32(1), 12-16, 1978.

[26] A. Candel, V. Parmar, E. LeDell, A. Arora, “Deep Learning with H2O,”
in http://h2o.ai/resources, 2018.

2018 International Joint Conference on Neural Networks (IJCNN)

