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Abstract— Internet of things (IoT) results in massive amount of 

streaming data, often referred to as “big data”, which brings new 

opportunities to monitor agricultural and food processes. Besides 

sensors, big data from social media is also becoming important for 

the food industry. In this review we present an overview of IoT, 

big data, and artificial intelligence (AI) and their disruptive role in 

shaping the future of agri-food systems. Following an introduction 

to the fields of IoT, big data, and AI, we discuss the role of IoT and 

big data analysis in agriculture (including greenhouse monitoring, 

intelligent farm machines, and drone-based crop imaging), supply-

chain modernization, social media (for open innovation and 

sentiment analysis) in food industry, food quality assessment 

(using spectral methods and sensor fusion), and finally, food safety 

(using gene sequencing and blockchain based digital traceability). 

A special emphasis is laid on the commercial status of applications 

and translational research outcomes. 

 
Index Terms— precision agriculture; social media; gene 

sequencing; blockchain; sensors; internet; digital; robotics 

I. INTRODUCTION 

NTERNET of things (IoT), big data and artificial intelligence 

(AI) are perhaps old buzzwords in the tech-industry, that are 

making an impact only in very recent times. In fact, data from 

Google Trends search history for these topics shows that IoT 

and big data have drawn considerable interest of broad-based 

internet users within last five to six years, while AI remains a 

topic of interest for much over a decade (see Fig. 1). In fact, 

with the increase in communication devices the volume of data 

generated is rising and AI is continuing to well-integrate into 

the lives of a big population of the planet in one form or the 

other. Unlike AI, IoT primarily being industrial technology 

remains to be of low interest to the general public. A natural 

topic of interest for agri-food scientists and engineers would be 

to maximize the impacts of these emerging information 

technologies for sustainably feeding the planet. As a first aim 

of this review, we will begin by briefly introducing these topics 

for those audiences who are coming from a background in 

agriculture and food sciences. 
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Fig. 1 Relative worldwide search traffic for the terms Internet of 

Things (IoT), Big Data and Artificial Intelligence on Google over the 

last decade. Data accessed from Google Trends on June 16, 2019. 

Numbers represent search interest relative to the highest point on the 

chart for the given time. A score of zero means that there was not 

enough data for this term. 

 

 First coined by Kevin Ashton, IoT is a technology paradigm 

contemplated as a vast network of digitally connected devices 

and machines [1]. Here, the digital connection of the machines 

or ‘things’ occurs over ‘internet’. IoT is sometimes also referred 

to as the Internet of Everything or the Industrial Internet. The 

influence of IoT arises from its ability to enable robust 

communication between the physical world with that of the 

digital, a concept often referred to as the fourth industrial 

revolution. In fact, the use of IoT in industry is sometimes also 

referred to as ‘Industrial Internet of Things (IIoT)’. In the IIoT 

framework, remote sensors gather information generated by 

machines (and increasingly, humans too) to increase efficiency, 

promote better decision-making and build competitive 

advantages, regardless of industry or company size. IoT 

platforms serve as the bridge between the devices' sensors and 

the data networks, wherein the connected IoT devices exchange 

information using internet transfer protocols. The sensors of the 

devices within an IoT network yield large volumes of data that 

continuously stream to a “data lake”, which could be a local 

physical server or cloud based storage (i.e. distributed across 

the internet worldwide) for enabling necessary data processing 

via appropriate algorithms or machine learning techniques to 

generate actionable insights. Thus, we note that IoT is 

essentially the means to generating and transmitting large 
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amounts of data with information of practical use embedded in 

it. 

 The concept and scope of big data, as a matter of fact, lacks 

a formal definition. Big data in the IoT context does not only 

refer to the structured or unstructured data, but also includes the 

aspects of analytics, insights, and (automated) decisions, all of 

which typically happen in real-time. In addition to the massive 

data generated from devices/sensors, the social media is an 

important source of user generated big data, which deserves 

special discussion. Though increasingly valuable, one should 

note that the social media data does not (strictly) fall into the 

IoT framework. We will discuss the usefulness of social media 

big data analytics later in this review in a dedicated section. The 

recent developments in machine learning, artificial intelligence 

and boom in the data science field, coupled with improvements 

in computing power has enabled the automated decision 

support, real-time analytics for insights, and better performance 

of supervised (learning) models. A discussion of the relevant 

machine learning tools for artificial intelligence is also included 

later in this review. 

 In Fig. 2, we provide a graphical summary of the IoT and big 

data framework in agri-food context to facilitate discussion of 

several concepts within our review. Here we note that the data 

can come from agriculture, food processing/manufacturing, 

supply chain, traceability, or consumers. While sensors are 

points of data source in case of IoT, data from consumers comes 

in the form opinions shared on social media platforms. The data 

from multiple sensors and sources when appropriately 

combined, it provides information about the primary production 

or processing or retail activities. Upon suitable analysis of the 

information using computer models, the information is 

transformed into knowledge about the performance of the said 

activities. In modern times, the data processing typically occurs 

at remote locations using high performance computers; this is 

known as “cloud computing”. The knowledge obtained about 

the system can be leveraged to make decisions for improving 

the performance of the activities or make suitable 

recommendations. When this entire process from data to 

decision is automated through self-learning methods, it is 

known as artificial intelligence. This trend of high level of 

automation in industry using cyber-physical systems, IoT, 

cloud and cognitive computing put together is known as 

“Industry 4.0”, literally meaning the fourth industrial revolution 

[2]. 

 

 In this review, we take a holistic approach to several frontier 

areas dealing with agri-food-consumer triad, bridging the 

language barrier among the disciplines of agricultural, food, 

electronics, and computer science. The applications we have 

chosen for discussion are based on our experiences as well as 

those of high significance to global agriculture and food 

industry. The discussions are based around the IoT devices – 

the sources of data, basic data processing, the disruption 

brought about by the technology, the implementation 

challenges, as well as research needs. We target this review at 

hard-core electronics, instrumentation and computer engineers, 

as well as, agri-food scientists, to provide an exposition of the 

meaningful impacts created by the new cyber-physical 

technologies. We hope that a cross-fertilization across the vast 

landscape of topics will motivate further research for building 

agri-food industry 4.0.  

II. FROM DATA TO ACTION 

Sensing is the birthplace of all data in IoT. Agri-food sector 

produces a large number of diverse datasets, both in content, 

structure, and storage format with the use of various IoT devices 

[3]. Common characteristics of big data include heterogeneity, 

variety, unstructured nature, noise, and high redundancy [4]. 

Such huge amounts of data require complex methods for data 

curation and storage, as well as intensive statistical approaches 

and programming models to extract relevant information. The 

conditioning and pre-processing of primary data results in 

information required to understand the state of the (agri-food) 

system. By applying advanced algorithms and measuring the 

performance of the system with respect to desired outcome, a 

system can be made capable of making independent localized 

decisions and take appropriate actions. This level of 

independence allowing autonomy in sensing, decision making, 

and actuation is what makes an IoT system “intelligent”. 

 The field of artificial intelligence (AI) involves the 

development of theory and computer systems capable of 

performing tasks normally requiring human intelligence, such 

as sensorial perception and decision making. Kaplan and 

Haenlein [5] defined AI as “…a system’s ability to interpret 

external data correctly, to learn from such data, and to use 

those learnings to achieve specific goals and tasks through 

flexible adaptation”. Thus, AI 

acts on external information 

sourced from IoT and other big 

data sources, use knowledge-

based rules (provided by 

developers) or identifies the 

underlying rules and patterns 

using machine learning, to 

drive the systems towards set 

objectives. A truly intelligent 

system can learn, generalize (if 

there be such scope), 

accumulate knowledge, set 

objectives and priorities, and 

minimize risks for decision-Fig. 2 A pictorial representation of the IoT framework within agri-food industry context. 
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making processes. 

AI can be brought into industry through “expert systems” 

built on rules, and this approach is referred to as “rule-based” 

AI [6]. The collection of all rules governing the behaviour of 

the system are either based on physical principles or 

experience-based human expert knowledge. In this approach, 

the system or process is constantly 

monitored using IoT devices or 

sensors. The IoT sensors yield data 

about individual system descriptors 

which is analysed using the rules. 

The raw data is occasionally also 

curated and stored into a database to 

depict trends. It is to be noted that 

the complexity in agri-food systems 

is very high due to the involvement 

of many unpredictable variables in 

agriculture, the heterogeneity of 

food materials, and the food-habits 

of consumers. This makes it almost 

impossible to translate the farmers, 

industry experts, and consumers 

knowledge into clearly expressed, 

well-defined rules (computer 

programs) that can be implemented 

into AI based expert systems [7]. 

Nevertheless, rule-based based AI 

is suitable in scenarios where real-time decisions and control 

are a necessity and when one cannot afford to frequently train 

the AI system. 

Considering the drawbacks of rule-based AI, machine 

learning based AI has become more popular in recent times [8]. 

In ML based AI, there may be a lag period between data 

collection (sensing) and making predictions or decisions, as the 

system is programmed to look for patterns in the data collected 

(e.g. from IoT sensors). At present, ML based AI systems do 

not involve use of human intelligence-based computer rules 

(i.e. compliance with any kind of science or physical reality or 

expert experiences); rather, these are purely data driven. ML 

based AI is suitable for systems where frequently training the 

system is not a constraint and higher accuracy is desired, which 

is quite true for agri-food systems. 

 Machine Learning (ML) is one of the central topics of AI, 

since a feature usually attached to intelligence is the ability to 

learn from the environment. ML is a technique for developing 

AI which gives computer the ability to learn without being 

explicitly programmed [9]. Simply put, ML algorithms distill 

and coalesce knowledge from unorganized data in a manner that 

their outputs are computer programs able to accomplish useful 

tasks such as alert a user or actuate critical steps [7]. It explores 

the study and structure of algorithms that can learn from and 

make predictions on data; such algorithms overcome strictly 

static programing instructions by making data-driven 

predictions/decisions [10]. ML algorithms can be broadly 

classified into the following four main categories: (a) 

Supervised learning: These algorithms receive labeled data as 

training sets and make predictions for unseen points. (b) 

Unsupervised learning: These algorithms receive unlabeled 

data as training sets and make predictions for unseen points. (c) 

Reinforcement learning: These algorithms continuously 

interacts with the environment, under certain cases it affects the 

environment, and receives award for each action; the objective 

here is to maximize the reward over a course of actions and 

iterations with the environment [11]. (d) Representation 

learning: also known as feature learning, these include a set of 

methods that allow a machine to be fed with raw data and to 

automatically discover the representations needed for detection 

or classification [12]. The widely acclaimed deep learning 

based on neural networks is the best example of representation 

learning. Fig. 3 shows various models under these mentioned 

categories and their technological applications. Detailed 

discussions about ML methods and their agri-food specific 

applications can be found elsewhere [9, 13]. 

Owing to its unprecedented impacts, the area of deep 

learning with neural networks deserves a special mention. Deep 

learning methods enable extraction of high levels of 

information from very large volumes of data. Unlike traditional 

machine learning methods, the algorithms in deep learning are 

hierarchically organized according to increasing complexity. 

The computational models in deep learning comprise of 

multiple processing layers to learn representations of data with 

multiple levels of abstraction [12]. 

The overall flow of data from source, through the data 

processing or AI platform, until the final action – usually some 

kind of control, is summarized in Fig. 4. AI techniques are 

advancing rapidly, but most upcoming applications will likely 

involve a combination of both rule-based analysis (to represent 

first-principles constructs in the data) and new AI methods.  

This is especially the case when daisy-chaining datasets 

through a supply chain. Further, data and new algorithms are 

expected to be combined with practiced human domain 

expertise, so that people will understand and trust the process 

by which computer programs came to their conclusions. 

Fig. 3 Machine learning paradigms and their applications in the agri-food space. 
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The end objective of AI or big data workflow is usually some 

kind of process control or automation in the industrial context. 

Nonetheless, the end-application of all IoT, big data analytics 

and AI systems is context dependent, and besides automation, 

could also involve obtaining insights, making predictions, 

providing alerts (fault detection). The final nodes of the 

learning methods in Fig. 3 provide some common examples of 

end applications for which the insights from data are generated 

using the machine learning tools.  

 
Fig. 4. A simplified workflow from data to action in the IoT ecosystem, 

and the role of artificial intelligence. 

III. BIG DATA AND IOT IN SMART FARMING 

With the planet’s population projected to reach almost 10 

billion by 2050, innovative approaches to food production will 

be required to meet the food demands. However, the current rate 

of agricultural yield increases are way below than those 

predicted to be met for feeding the world in future [14]. 

Therefore, much like in the 1970’s when we had the first 

agricultural revolution, the world needs to see a disruption in 

the agricultural practices. It is imperative that novel and smart 

solutions are developed for global food security, food safety, 

sustainable food-consumption, and health and well-being of 

society. Technologies that could enable reduced use of 

resources for agriculture, e.g. water, fertilizers and 

agrochemicals, and help to significantly cut-down the carbon 

footprint of farming will be important drivers for global 

agricultural sustainability. Likewise, environment friendly 

intervention strategies that protect food crops or food products 

from decay or pests, which lead to reduced losses and/or allow 

extension of shelf-life are important levers to address global 

food security challenges. The application of modernised 

technologies in agriculture is broadly referred to as “smart 

farming”. Of the many developments, the use of (i) sensors 

deployed to monitoring farm conditions, and (ii) low altitude 

air-borne hyperspectral imaging are topics we consider 

worthwhile discussing in this review. A detailed review of the 

role of big data in smart farming is already available [15]; 

hence, our aim is to provide an exposition of the developments 

where many agri-food-automation companies are actively 

contributing or reaping the benefits. 

A. Connected field sensors and machines 

Precision Agriculture (PA) is a management concept which 

recognizes variability within the soil environment and 

maximizes economic agricultural production while minimizing 

environmental impact for a specific location [16]. PA is all 

about applying the right material in the right amount at the right 

location and right time, which is known as the 4R concept [17, 

18]. Since its introduction in the 1990’s, PA has had high 

expectations to increase efficiency of agricultural operations 

especially in commercial production where the fear of losing 

yield has led to management practices that are based on 

excessive implementation of chemicals. Though crop yield 

monitoring has been around for almost two decades, the 

development and implementation of smarter farm machines, 

crop sensors, and the software to analyse data that these devices 

collect has recently become a game-changer in yield results. 

 The technology development over the last few decades has 

enhanced the position of PA as an emerging management 

concept. Digital sensors that monitor real word parameters 

continue to be presented in the market at affordable prices. For 

instance, digital temperature sensors priced at a few dollars and 

as small as few cubic millimetres are available for placing at 

any place in an agricultural field to obtain accurate temperature 

data, provided they are correctly enclosed and powered [19-21]. 

Also, machine to machine communication protocols via 

electronic components have been revolutionized, among which 

the internet stands out as a global communication protocol that 

can pass data and information between a set of remote 

computers anywhere in the globe. 

 The continuous shrink in size and cost of electronic 

components, such as processing units, modems, and antennas 

enabled the connectivity of mobile devices and sensors to the 

internet as stand-alone objects, which is why the term IoT is 

used [1]. Now, technology companies have IoT-based solutions 

for precision agriculture which consist of; sensors being able to 

measure the environmental conditions, for instance, at different 

localized spots within a farm; cloud-based platform to collect 

and integrate data; artificial intelligence algorithms that extract 

information and predict patterns; communication mechanism 

with farm manager over the internet to notify about conditions, 

instructions, or required actions. 

 Bosch Corporation is a global engineering company that has 

adopted Industry 4.0 in its business and has emerged into the 

field of agriculture by providing a number of solutions [22]. 

Industry 4.0 on its own is the digital transformation of industrial 

markets with smart manufacturing currently on the forefront. It 

represents the so-called fourth industrial revolution in discrete 

and process manufacturing, logistics and supply chain. 

Although Industry 4.0 has been conceived in the context of 

manufacturing, many of the technologies applied and 

converged in Industry 4.0 find their way in agriculture [23]. 

 Bosch’s Deepfield Connect provides solutions to monitor the 

agricultural fields for different parameters [24]. Each solution 

consists of a set of sensors connected directly to the internet via 

a communication box which sends the data to Cloud, which in 

turn sends information and alerts to the farmer on his/her smart 

phone or computer. Once the set of sensors are installed in one 

location, it will start sending environmental temperature and 

humidity information as well as soil moisture information 

periodically to the farmer so that unnecessary journeys to the 

field to check on frost, heat, or dryness can be avoided. To 

exemplify with asparagus crop, through in-field temperature 

sensors, the farmer can know the temperature at different layers 
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of the subsoil- an information essential for high yield output. 

The advantages of such connected solution extend to the 

maintenance services that companies provide as they can 

simultaneously monitor the drop in the performance of an 

equipment or a component (for instance, a battery) and send 

timely replacements. 

 Another organization, Yield Technology Solution, places 

sensor nodes (a group of environmental and soil sensors) at 

different locations in an agricultural field that communicate 

with one gateway over local communication system [25]. The 

gateway, in turn, connects to the internet to store and process 

data in the Microsoft Azure cloud. Their system measures 

microclimate data from around the farm and uses artificial 

intelligence and data science to provide information that helps 

in making decisions – e.g. when to plant, harvest, irrigate, feed 

and protect crops. The system builds a detailed picture of the 

farm’s microclimate across a range of conditions and delivers 

these insights to the farmers as current and future predictions. 

 In Japan, Bosch has launched Plantect, a solution targeting 

greenhouses, in which one farmer can connect a set of sensors 

located in different greenhouses within certain proximity to be 

connected locally to a single gateway which is connected to the 

internet [26]. From the information received about the changes 

in environmental conditions in the greenhouses, Bosch employs 

cloud computing and artificial intelligence to predict disease 

breakouts and advice on pest control management for 

individual greenhouses. Such a solution aims ultimately to 

optimize the usage of plant protection products by spraying 

fungicide, for instance, which contributes to the PA 

management of optimizing spraying. Although the solution is 

available now for tomato greenhouses, it should be 

straightforward to expand this system to other crops via 

development of specific prediction models for each disease 

while using the same hardware to collect and visualize data. 

 For greenhouses, fully automated solutions to control the 

internal weather and irrigation schedule are available in the 

market (see Fig. 5). Priva provides such systems where a local 

communication system between the sensors and actuators 

within one greenhouse work together to maintain optimum 

growing conditions for the plants [27]. For instance, 

temperature and humidity sensors talk to the motors that open 

and close side windows and ceiling to avoid over heating inside 

the greenhouse during the day. In cold nights, they can turn on 

a heater, if the greenhouse is equipped with one, to maintain a 

minimum temperature to avoid frost. These sensors can also get 

assistance from a rain detection sensor placed on the roof of the 

greenhouse, that can actuate closing of the ceilings and 

maintain the side windows open on rainy hot days, for instance. 

Also, as the need for irrigation is closely related to light, the 

irrigation pump is controlled by solar radiation sensor that 

requests the pump to irrigate when it detects the accumulation 

of a certain amount of solar energy during the daytime. Lately, 

with the drop of carbon di-oxide (CO2) sensor prices and the 

increasing evidence of the correlation between higher CO2 

concentration levels and yield, modern greenhouse control 

systems include CO2 sensors which control CO2 generators that 

turn on when the photosynthesis activity is high during daytime. 

Several other new companies are rapidly emerging with distinct 

solutions to provide greenhouse control and cloud connectivity. 

Agrinet  is a solution that combines greenhouse machinery 

provided by Nepon Inc. and information and communication 

technology (ICT) provided by NEC Corporation to enable 

monitoring and controlling the equipment in the greenhouse 

remotely [28, 29]. 

 
Fig. 5. IoT based monitoring and control of greenhouse cultivation 

environments. The greenhouse environment is monitored using a 

variety of IoT based sensors, and the automated control is 

implemented through heating, ventilation, or opening of windows 

using actuated motors. 

 

Similarly, E-Kakashi, which was launched by Softbank in 

2015 as a sensor box to monitor greenhouses [30], was 

upgraded into a platform after Softbank teamed up with CKD 

Corporation and Ericsson [31]. The platform not only keeps 

constant watch over fields and greenhouses, but also control the 

environment inside the greenhouse. The sensors monitor 

parameters such as temperature, humidity, and CO2 and the 

machines in the greenhouse are connected to the cloud via 

Softbank’s NB-IoT cellular network. The PS Solutions’ e-

kakashi platform applies AI to adjust equipment based on 

environmental data and Ericsson IoT Accelerator powers the 

device onboarding and data management. Finally, CKD 

Corporation’s electro-pneumatic devices allow machinery to be 

controlled remotely. Accordingly, E-kakashi can make 

appropriate adjustments to machinery such as fertilization, 

irrigation and greenhouse ventilation systems. Whenever and 

wherever he/she wishes, the e-kakashi user can access and 

interact with the system using a smartphone, tablet or computer. 

The farmer can modify the AI-based standard settings to apply 

their personal know-how. 

 Finally, John Deere, the largest agricultural machinery 

manufacturer in the world is estimated to have deployed several 

hundred thousand connected machines in the field since 2012. 

The company estimates that their IoT data collection and 

automation has boosted yield and reduced costs by >10% for 

farmers [32]. The IoT device installations in the agriculture 

world is predicted to increase from 30 million in 2015 to 75 

million in 2020, with a compound annual growth rate of 20% 

[33]. Several large public-private EU consortia are involved in 

assessing the benefits of IoT and big data application in 

agriculture, dairy, poultry, and meat production. An EU 

sponsored project named DataBio (Data-Driven Bioeconomy) 

is being carried out to understand the benefits of big data 

technologies in the raw material production from agriculture, 
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forestry and fishery/aquaculture for the bioeconomy industry to 

produce food, energy and biomaterials, responsibly and 

sustainably [34]. Likewise, the project IoF 2020 (Internet of 

Food and Farm 2020) funded by the EU Horizon 2020 and 

coordinated by Wageningen University, dealt with the “Farm of 

the Future”, trying to translate and adapt the “internet of things” 

technologies to the farm’s environment [35]. 

B. Advances in intelligent farm machinery 

The traditional farming equipment companies are engaged in 

designing of smarter equipment that can integrate with 

computing environments, connect to IoT devices, smart 

tractors, and pumps, capable of sensing their environments and 

responding in real-time to anomalies. In recent years, attempts 

to build agricultural autonomous systems for implementing PA 

techniques have significantly increased and being implemented 

by many start-ups in farms. Cameras have followed the same 

trend of environmental sensors of becoming smaller and 

cheaper. Their ability of collecting spatial and spectral data 

made them subject of research although the need for high spec 

processing units in comparison to other sensors was one of the 

main initial concerns for its application in real-time conditions. 

However, this has changed in the recent years as powerful 

processing units are widely accessible. 

 The high cost of applying herbicides and the increasing 

awareness about the impacts of excessive usage of chemicals 

on the environment and human health, are driving the efforts to 

implement cameras as sensors in the field of agriculture to 

detect weeds. There has been traditionally, two approaches to 

control weeds, which are the chemical and mechanical. In 

principal, mechanical control has the advantage of being 

environment-friendly but labour intensive whereas chemical 

control has the opposite features. Recently, some start-ups have 

emerged as providers of intelligent and autonomous weeding 

machines based on cameras for sensing weeds in the fields. We 

will provide a few examples of recent commercial 

developments in this area. 

 Garford Farm Machinery has developed a tractor 

propelled weeding machine (marketed as Robocrop in-row 

weeder) that consists of machine vision, control system, and 

weeding mechanism [36]. The main feature of this machine is 

that it mechanically removes weeds which are located within 

the rows. This is achieved using a weeding mechanism that 

rotates around each plant in a spiral trajectory. The plant in turn 

is detected using RGB colour cameras whose data are processed 

within the machine to determine the centre of the crop around 

which the mechanism will rotate. It was originally developed 

for use on transplanted crops such as lettuce, cabbage, celery, 

etc. but it can be used for most crops that have regular plant and 

row spacing as long as the plant foliage is separated from the 

next plan [36]. It can be used on most crops that are planted 

with regular plant and row spacing where the plant foliage is 

clearly separated from the next plant. 

 Deepfield robotics of Bosch have developed and tested 

autonomous mechanical weed controller that uses GPS antenna 

to be self-guided within the field and cameras to distinguish 

crops, such as sugar beet, from weed. The robot whose weeding 

mechanism lies underneath the machine can work also at night 

under artificial lighting conditions [37]. This autonomous 

vehicle was designed to target weeds in cultivation of sugar 

beets - a crop of high economic value in Germany. 

 Blue River Technology, a start-up recently acquired by 

John Deere, has developed yet another type of weed control 

machine that also uses cameras, computers, and artificial 

intelligence to distinguish crops from weeds [38]. The tractor-

propelled machine currently operating on a limited basis in 

cotton weeding uses chemical methodology to combat weeds 

by specifically spraying herbicides on spots where weed is 

present. The main advantage of this technology is reducing the 

quantities of chemicals used in agriculture which will bring 

economic and environmental advantages. 

 Besides weeding, there are trials to apply vision 

technology in orchard harvesting operations which are 

characterized by labour intensity and time sensitivity. Typical 

examples of these trials can be found in apple and kiwifruit 

harvesting. The main challenge in automating orchard 

harvesting is that the fruits grow in usually an unstructured 

environment. Unlike weed, whose distance from the machine is 

estimated by the approximately constant distance between the 

machine and ground, the location of fruits on tree cannot be 

predicted. Also, the sceneries surrounding fruits contain more 

noise than weeds whose background is limited to other plants 

and soil. This makes developing commercial harvester a real 

challenge despite the need for such machines for labour saving 

and optimizing yield.  

 In academic literature, research tackling apple recognition 

and picking is available since the early 21st century as Bulanon 

[39] developed a machine vision software to detect location of 

apples on trees. Likewise, research of robotic arms and effectors 

started to take place relatively at the same period as Setiawan, 

et al. [40] developed a gripper that can pick apples without 

harming the skin. Apple fruit recognition on trees continued to 

develop as Bulanon, et al. [41] developed a real-time detection 

system, Mao et al [42] developed a stereo vision to detect also 

the distance between the machine and apple to be harvested, and 

Kong et al [43] used least square support vector machine to 

improve accuracy and speed of stereo vision in detecting 

apples. Robotic arm and end effector research continued to 

improve accuracy and speed of gripping and detaching apples 

from trees [44-46]. Silwal, et al. [47] reported the design, 

integration, and field evaluation of a robotic apple harvester 

able to detect and pick 84% of the apples with an average 

picking time of 6 seconds per fruit. 

 Kiwifruit recognition system based on imaging, for future 

robotic harvester, has some advancements in academic 

research. In order to overcome the problem of noise caused by 

variation of ambient light, Fu, et al. [48] suggested harvesting 

at night using artificial lighting to minimize the chance of 

kiwifruit misclassification. Unlike apples, kiwifruits tend to 

cluster in groups which makes ‘visual individualizing’ an 

essential feature of any kiwifruit picking robot; this was tackled 

by Fu, et al. [49]. However, issues such as insufficient success 

rate in detection and slow recognition time are two challenges 

that remain to be tackled before a commercial product could be 
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developed. Despite the slow progress in developing vision 

system for robotic orchard fruits picking, investment in this 

technology is expected to continue as the need to replace 

manual harvesting is becoming increasingly urgent in countries 

such as the United States, Japan, and China. 

C. Low altitude spectral imaging 

Healthy agricultural plants normally reject much of the 

infrared spectrum. However, when facing a crisis 

(diseased/stressed) plants tend to absorb more infrared light. 

This information is useful for identifying plant infestation, 

nutrient or moisture deficiency. Similarly, the greenness of an 

agricultural field (related to the chlorophyll content of the 

crops) usually correlates with the nitrogen supply. Traditionally 

monitoring of field and agricultural conditions (such as crop 

health, and coverage) was carried out using low-resolution 

satellite based remote sensing techniques that measured the 

vegetation cover over the scales of counties or states. Such 

methods allowed to get country-wide insights about the yield 

were of little use to farmers. To overcome the issues arising 

from low spatial resolution and make spectral imaging 

techniques accessible at individual farm levels, low-altitude 

manned vehicle based spectral imaging was adopted as a 

solution. This approach was somewhat useful considering that 

the spectral cameras operating in the infrared region were bulky 

with a big footprint. With the advancements in spectral imaging 

technologies, the size and weight of spectral cameras has 

drastically decreased, and now these could easily be mounted 

on drones or quadcopters. The most notable advancement with 

respect to spectral cameras is the availability of compact palm-

sized snapshot hyperspectral imagers. These have a much lower 

footprint and weight compared to push-broom (or line scanning 

hyperspectral imagers) and are also less expensive. 

 Data companies are now gathering aerial images of 

standing crops in farms using hyperspectral and multi-spectral 

cameras mounted on manned or unmanned aerial vehicles 

(MAV or UAV), e.g. quadcopters, drones. Spectral cameras 

capture image stacks at several wavelengths, with loosely up to 

10 bands referred as “multispectral”, and over 10- 

“hyperspectral”. Some imaging service providers couple multi-

spectral cameras in non-visible regions with high resolution R-

G-B (visible) cameras. The images from spectral imaging 

systems are generally taken at sufficiently high resolution (from 

metre scale to even centimetre scale), but generally down-

sampled (smoothed) for delivery of practically useful results. 

 Spectral images of vegetation show considerable variation 

due to the heterogeneity of natural conditions of the fields (e.g., 

hydrothermal, soil, geomorphological) and the agricultural 

systems (tillage methods, irrigation, use of fertilizers, 

herbicides, pesticides, etc.) [50]. Using machine learning 

algorithms applied to the imaging datasets and incorporating 

environmental variables, data analysis platforms can generate 

insights about various indices of importance to crop growth and 

quality. Examples of such insights include, vegetation index, 

weed cover, pest infestation, water logging, yield monitoring, 

nutrient deficiencies, and maps for variable rate application. 

Such information is generally gathered by flying the drones and 

imaging the fields between 2 to 3 times in a cropping season. 

Eventually, time series analysis of imaging data to assess the 

effectiveness of agricultural practices and self-learning 

techniques for improvement may also be included into the data 

analysis in some systems. A notable example of the ‘data 

analytics as a service’ business model for the drone-based 

hyperspectral imaging of sugarcane and soybean fields is the 

Swiss start-up, Gamaya (www.gamaya.com). Gamaya employs 

crop, variety, and region-specific analysis of hyperspectral 

imaging data (with 40 bands) using crop models and artificial 

intelligence to produce detailed information on crop phenology 

and physiological traits. 

IV. FOOD SUPPLY-CHAIN MODERNIZATION 

The United Nation reports that one-third of the world's food 

is thrown away each year, which adds up to $750 billion that is 

completely wasted. That means that about 28% of the world's 

agricultural land is used to produce food that is eventually 

wasted. The supply chain management in a food business is 

very challenging owing to the need for advanced control 

systems for coping with perishables, fluctuating supply-

demand variations and narrow food safety and sustainability 

goals. Consequently, the use of IoT networks involving 

humidity, temperature, light, microbiological and product 

quality sensors for real-time monitoring of products in transit is 

useful for the food industry in rescheduling, recalling or taking 

appropriate actions. According to a report by Zion Market 

Research, the global AI application in supply chain market 

stood at US $491 million in 2017 and is projected to reach about 

US $6,548 million by 2024, at a CAGR of around 44.76% 

between 2018 and 2024 [51]. An exhaustive review of the role 

of IoT in supply chain management in general has been made 

by Ben-Daya, et al. [52], while one specific to agri-food 

industry is presented by Lezoche, et al. [53]. 

 Considering that food supply chains extend over wide 

geographical areas and are vulnerable to many global risks, IoT 

could help in minimizing the risks. Recently, the virtualization 

of the food supply chain through IoT and an information 

systems architecture was successfully demonstrated for a fish 

export business from Norway to the Netherlands [54]. In their 

paper, the team provided ample arguments to show that supply-

chain virtualization through integration of real-time product 

observations (via IoT devices), combined with business 

processes provide rich representations of the objects and its 

context. Such virtualization will enable stakeholders to act 

immediately when deviations are observed (e.g. temperature 

fluctuations leading to product quality change). The essential 

features of the virtual IoT based supply chain include free 

exchange of logistics information, and functionality for 

intelligent analysis and reporting of exchanged data to enable 

early warning and advanced forecasting [55]. 

 A more generalized approach to virtualize the supply chain 

stages has been demonstrated by a group from Italy, who 

developed an IoT based tool in LabViewTM to integrate the 

entities involved, the product flows and the food ecosystem 

boundaries [56]. The authors concluded that IoT based 

virtualization of food supply chain will allow a dramatic 
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reduction in the inefficiencies, costs, emissions and social 

impacts. To provide an example of the power of virtual (or 

cyber-physical) supply-chain systems, let us consider a food 

truck equipped with temperature, humidity, and location (GPS) 

sensors carrying soft berries (say, strawberries). Through 

virtual supply-chain systems, logistics providers can accurately 

track the location of the food truck at any point in time. Now, 

in the unlikely event of food shortage at a different location, the 

nearest truck can be rerouted to the new destination. 

Alternatively, if a temperature fluctuation is noticed, such that 

it may affect the shelf-life of the berries, the truck can be 

diverted to the closest market for immediate sale at discounted 

price. Thus, IoT technology could not only help the growers or 

help to meet the product demand, but also prevent food 

wastage. 

 The destination of the food truck in our example can also 

be decided based on customers identified through social media 

platforms or mobile phone applications. Food Cowboy 

(www.foodcowboy.com), for example, uses a mobile app to 

allow truckers and food companies to reroute imperfect produce 

to charities, spoiled produce to composting sites, and surplus 

food from local restaurants to food banks and soup kitchens. 

Many other online interactive maps linking places with food 

surplus to charities and people who need it, and apps connecting 

neighbours for food sharing have also evolved. However, the 

safety of food and legal implications in such peer-to-peer food 

sharing platforms remains unclear. 

 The past decade has seen a significant rise in the use of 

machine (or computer) vision to efficiently and timely execute 

repetitive tasks in supply chain, including quality control 

inspection. The supply chain industry is increasingly relying on 

automated guided vehicles (AGVs) based on AI, machine 

vision, and navigation technologies (e.g. simultaneous 

localization and mapping, SLAM) for automated material 

handling in manufacturing [57, 58]. Machine vision has helped 

companies in implementing end-to-end automation [59], and 

now the application of AI for its integration with supply-chain 

for individual product tracking is being explored. In recent 

times, grocers are using inventory barcodes and sensor-

collected data to determine the rates of inventory consumption, 

such that stocking levels can be set to meet but not exceed 

demand. Radiofrequency Identification (RFID) is another 

sensor technology that has seen an exponentially rising 

adoption by producers, food processors, agri-food supply chain 

industry, and merchants to establish traceability systems [60]. 

 In a related context, introduction of counterfeit products 

into the market is a big challenge for food and pharmaceutical 

companies. Similarly, ‘product diversion’, i.e. the movement of 

a product consignment to a location not originally intended, 

though uncommon, also occurs sometimes. While technologies 

such as barcodes and holograms have been in use for decades 

heretofore, the minor deviations during the print of barcodes 

has been exploited as a unique fingerprint by the company, 

Systech International (www.systechone.com). Their unique 

process uses the microscopic differences (arising from 

production environment variables) in the same barcodes on 

multiple products as a unique fingerprint. Thus, this fingerprint 

data retrieved in the manufacturing facility using a computer 

vision system can be used to track individual products 

throughout the supply chain, thereby preventing product 

diversion. Furthermore, this data can also be used for validation 

of the product by retail outlets and consumers using 

applications owned by brand owners, thereby helping to prevent 

counterfeiting. 

 Should IoT integrated with cloud computing take up the 

space of connecting movement of raw materials and finished 

products to the automated databases, the process of 

documentation and regulatory compliance will become much 

easier and efficient. Next, it will be interesting to note that 

customers are more and more demanding in terms of food 

choice – portion size, shape, flavour, colour, price and the level 

of service [61]. IoT, and AI could serve as enablers for ‘end of 

line’ and ‘last minute’ customization technologies for the food 

industry [62]. Thus, in future, an internet-based food purchase 

order received from a customer with several peculiar 

specifications could automatically be redirected to the robots on 

the production line for ‘last minute’ customization. In fact, it 

will not be exaggerating to state that IoT and AI enabled 

customization-oriented production will be one of the significant 

achievements of food industry 4.0. 

Despite the projected potential benefits, the integration of 

IoT with business processes is still at a very early stage of 

development in food supply chains and food industry, in 

general. Several challenges with respect to granular data 

alignment exist when creating end-to-end digital thread from 

farm to consumer. It is to be noted that supply-chain systems 

are very cross-functional and additionally involve data sharing 

between companies/business entities. As such, cross-entity data 

sharing becomes much more challenging in the agri-food sector 

where data from farms is currently very limited. Even when 

considering large food manufacturers and enterprises, they rely 

on co-packers or outsource to contract processors, meaning a 

third-party holds all the production facility data, that too under 

different naming conventions. Moreover, many raw agricultural 

materials are often sourced by industry in developed world from 

developing or under-developed regions, where there often is a 

lack of data-awareness. The process of including most partners 

into the AI system is crucial to avoid under-performance of the 

algorithms due to missing data and prevent loss of opportunities 

for optimization. Next, most agricultural products undergo 

dynamic changes in their quality and therefore pricing. This 

additional layer of high uncertainty adds difficulty in tracking 

such data in real-time as compared to other supply-chains. The 

development of appropriate frameworks for reaping the benefits 

of IoT, big data and AI needs immediate attention for its 

success. 

V. WEB AND SOCIAL MEDIA ANALYSIS 

The massive rise in the number of computing and mobile 

devices in use has resulted in an exponential growth in data 

volumes over the Internet. It is estimated that every minute of 

internet activity in 2016 resulted in 3.3 million Facebook posts 

and 448,800 tweets, 65,972 pictures and 3.8 million searches on 

google [63]. Social media data can come from a variety of 
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platforms, such as, blogs, discussions or comments on websites 

(e.g. news pages), microblogs (Twitter), collaborative projects 

(e.g. Wikipedia), social networking sites (Facebook, LinkedIn), 

and content communities (e.g. YouTube and Instagram) [64]. 

Typical examples of metrics that can be drawn from social 

media content created by users include; followers, shares (or 

retweets), likes, comments, mentions, metadata associated with 

the clicks. The metadata associated with users’ activities could 

include information such as the age, nationality, education, 

profession, geolocation, and more, depending on what the user 

had preferred to share. 

 Briefly, social media data refers to the information 

gathered from social networks that reveals how users share, 

view or engage with the content or profiles created by a user or 

organization. As the most common example, Facebook pages 

of companies “liked” by users results in the user receiving 

brand page updates and contents in their news feed. This way 

brands can interact with those who like or follow their pages 

and vice-versa. Nearly all food companies have a social 

presence with a huge number of people who follow their 

Facebook pages and thus, are part of the social interaction and 

data creation process (see Fig. 6). The aim of a typical social 

big data analysis is to retrieve valuable chunks of knowledge 

from the huge amount of complex user generated content (often 

linguistically or graphically expressed), and help agencies, 

industry, or stakeholders make informed decisions. 

 
Fig. 6. Number of people liking the Facebook pages of major food 

companies. Note that the bars are a sum of all filtered company pages 

(but not brands) that are verified by Facebook. Data retrieved on 7th 

July 2019. The numbers could include repeated measurements when a 

user has liked more than one page. 

A. Open innovation and renovation via crowdsourcing 

Innovation refers to introducing something as a novelty, which 

could be in terms of product, market, service, or business 

model. The concept of open innovation encourages companies 

to acquire outside sources of innovation to improve product 

lines and shorten the time required to bring products to market. 

In addition, it also emphasizes on marketing or releasing 

internally developed innovations which do not fit the company's 

business model but could be effectively used elsewhere [65]. 

Several reviews have dealt with various aspects of open 

innovation within the food industry [66-69]. 

Data mining via machine learning techniques are increasingly 

being employed to identify the most preferred and disliked 

features of existing products, by analysing thousands of 

consumer comments on websites like Amazon, eBay, 

Facebook, YouTube and other e-commerce website. Insights 

generated from natural language processing (NLP) and 

sentiment analysis (see section 5.2) of social media and e-

commerce data can guide development of new products or 

technologies as per consumer preferences, helping determine 

important design decisions to meet customer needs more 

accurately. This approach arms an industry with the information 

to make future products highly innovative, consumer friendly, 

resilient and respectful of market requirements. Note that the 

intellectual inputs for the new or improved product in such 

cases are fundamentally crowd-sourced through online 

platforms. 

Besides unsolicited user generated content, it is worthwhile 

noting that businesses also adopt web media as channels for 

building and distributing information and values. Social 

platforms are increasingly being leveraged as grounds for 

connecting, interacting and collaborating with consumers. For 

example, in recent years multinational food companies have 

been engaging consumers in co-creation via social media 

marketing campaigns for the development of new flavour and 

texture for their products. When users respond with a unique 

hashtag or media-handle to the campaign, all user responses 

with its associated can be gathered to obtain a huge corpus of 

information. Analysis of the textual data collected overlaid with 

user related metadata (such as geolocation, age, profession, 

time of content creation etc.) from social campaigns can be a 

valuable way to both gather insights and to market segmented 

brands. 

Finally, it is worthwhile mentioning that web-scraping and big 

data analysis is also being employed by many enterprises to 

compare the prices of the products and assess where the sales 

price of your products lie within that product category in the e-

commerce world. In conclusion, enterprises should consider big 

data analytics as one of the tools in their research toolkits and 

learn from the successful programs leading the way. By 

understanding what consumer’s value and engaging in active 

dialogue and interaction, companies can develop superior value 

propositions that are more relevant to their target audience. 

B. Sentiment analysis 

To determine the sentiments that consumers associate with a 

given product, brand or company- be it positive, negative, or 

neutral- big data analysts perform “Sentiment Analysis” on the 

huge corpus of text data from social websites, merchant sites, 

and blogs. In fact, several companies have either assembled or 

are in the process of assembling “digital acceleration teams”, 

also called “social listening teams”, to monitor social media 

sentiments at high frequencies (sometimes even at hour 

intervals). For scraping large-scale reviews at regular intervals 

several new start-ups around the concept of “Data-as-a-

Service” provider (DAAS) have mushroomed in recent years. 

DaaS providers have the computational infrastructure for high 

quality data extraction from e-commerce and social media 

websites without interruption. 

The first aim of most sentiment analysis workflows is to 

overcome the information barrier from social slang and lingos, 

non-textual expressions (emojis) and language. This is usually 

followed by matching of user generated words against a pre-

built, pre-classified custom lexicon (dictionary of words). 

Using tools for real-time analysis of streaming social data, the 

digital teams of companies can detect upcoming challenges and 
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opportunities in a timely manner. Companies can then engage 

with the concerned parties- consumers, organizations, suppliers 

or government bodies to harness the opportunity or resolve the 

challenge. As an example, a food industry can monitor the 

changes in sentiment scores associated with a reformulated 

product and thus assess the success of the reformulation to 

overcome the negative sentiments. 

C. Personalized nutrition and health advice 

Nutrition can be a highly complex and individualized facet of 

life. What works for one person may not be effective for 

another. The Internet has allowed the proliferation of advice 

relating to nutrition and health. It has been observed that 

between 55% and 67% of American adults search for health and 

wellness information on the internet, and 20-34% of them use 

social media [70]. In a recent work it was concluded that young 

adults are generally open to receiving healthy eating and recipe 

tips through social media [71]. Thus, it becomes clear that with 

an expanding population getting access to internet, nutritionists, 

health educators, and food companies can take advantage of 

social media campaigning and consented social data collection 

for personalized nutrition and health recommendations. 

Social media is increasingly being exploited as a platform for 

distributing nutrition and wellness campaigns, increase 

exposure to evidence-based health messages and encourage 

users to participate and engage with interventions [71]. In an 

exemplary multichannel social marketing campaign named 

Food Hero, a focused target audience in Oregano, USA were 

provided with nutrition related messages [70]. The audience 

were messaged with evidence-based research findings to 

promote an increase in the amount and variety of vegetables and 

fruit consumed. The metadata of users and their activity was 

used to understand the audience’s learning behaviour, tuning 

the content for effectiveness and long-term planning. While, 

cloud-based frameworks for effectively managing health 

related social big data has recently been proposed and 

demonstrated [72], such frameworks are yet to be reported in 

the nutrition space. It is also to be noted that the effectiveness 

of social media based targeting could become limited when 

users do not wish to share their personal health or nutrition 

related information [71]. 

Freeman, et al. [73] reported that young adults are being 

bombarded with messages about energy-dense, nutrient-poor 

(EDNP) food and beverages on social media platforms, that are 

sponsored by food industry organizations with commercial 

interests. A strict check on such conflicts between public 

interest and commercial interests through appropriate 

regulations is highly desirable. Unfortunately, governments 

around the world are yet to define and frame proper guidelines 

and regulate the content released on social media. It will be 

interesting if the academic world can come together with 

appropriate social media analytics to identify and classify the 

advertisements based on cleverly chosen metrics. Moreover, the 

fact that few enterprises store and use the data of consumers and 

their interactions with products for intensive marketing and 

influencing the decisions, is a matter of concern to many 

consumers. Governments need to regulate the privacy of data 

of its citizens and consumers, taking the European Union’s 

recently enacted General Data Protection Regulation (GDPR) 

as a good example. 

VI. FOOD QUALITY AND AUTHENTICITY 

In recent times consumer awareness towards food 

composition and quality has surged owing to an increasing 

awareness about healthy lifestyle and technological 

advancements in food science and technology. Moreover, food 

safety regulations demand detailed labelling of product 

composition along with strict quality monitoring [74]. In this 

context, UV-Visible-near infrared spectroscopy (UV-Vis-

NIRS) based IoT sensors and big data are evolving as important 

players in food composition, quality and food safety assessment 

areas. 

A. Spectral fingerprinting of foods 

UV-Visible-near infrared spectroscopy (UV-Vis-NIRS) is an 

extensively researched technology with regard to food 

composition and quality predictions [75-78]. Numerous studies 

have been conducted using UV-Vis-NIRS for evaluating food 

composition and quality with the aid of chemometrics [79-81]. 

The review by Reid, et al. [82] discusses the successful 

application of spectroscopic techniques such as UV, NIR, MIR, 

visible, and Raman for food authentication. Another review by 

Porep, et al. [83] emphasizes on the studies dealing with on-line 

application of NIR spectroscopy for industrial processes in the 

food industry. Similarly, the review article by Dixit, et al. [84] 

contributes a detailed discussion on the various studies 

regarding applications of NIR spectroscopy for online 

monitoring of meat and meat products. UV-Vis-NIRS is a rapid 

and non-destructive technology which has motivated the food 

industry to use it for quality monitoring purposes. The UV-Vis-

NIR region covers the wavelength range from 200–2500 nm. 

UV-Vis spectroscopy typically yields broad, overlapping 

bands; spectroscopic measurements for most liquid and gaseous 

samples rely on the Beer-Lambert Law. Spectra of solid 

samples are usually recorded in the units of reflectance (R) or 

percent reflectance (%R). Color measurements are conducted 

by utilizing the transmittance and reflectance data for liquid and 

solid samples respectively [85]. NIR spectroscopy is based on 

molecular vibrations produced by functional groups containing 

hydrogen atoms: C-H, N-H and O-H. These molecular 

vibrations generate spectral signatures which are specific to a 

compositional attribute, ingredient, adulterant or a contaminant. 

A characteristic UV-Vis-NIRS system consists of a light 

source, spectrophotometer and a computer for data acquisition. 

The light source illuminates the sample, which is then either 

reflected, transmitted or diffusely reflected followed by its 

detection via an interferometric or a dispersive system [86]. 

One of the major issue with NIR spectra is the noise 

generated from non-linearities introduced by light scattering 

phenomenon such as Mie scattering and optical scattering [87], 

which necessitates the use of statistical and mathematical 

routines. This branch at the interface of data science and 

chemical physics is widely known as chemometrics. 

Chemometrics plays a significant role in overcoming the 

challenge of non-linearities and thus helps in extracting useful 

information from UV-Vis-NIR spectra. Typical processing of 

spectral data involves enhancing the signal-to-noise ratio 

(SNR), (2) pattern recognition/classification/quantitative 
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predictions: pre-processed spectral data are subjected to various 

multivariate statistical methods for building either qualitative or 

quantitative models [85]. In an IoT context, spectral data 

acquired is typically transferred to a remote server where 

spectral processing is performed while validating the data over 

pre-built calibration models. This approach allows utilizing 

large spectral databases and trained models for near real-time 

assessment of various food materials. 

B. Miniature spectrometers as IoT sensors 

Until some years ago, UV-Vis-NIRS systems were bulky, 

immobile and accessible by laboratories only. However, recent 

developments in micro-fabrication and miniaturization of 

optical systems via holographic optical elements (HOEs) have 

empowered the creation of “palm-sized” spectrophotometers 

which are compact, mobile, pocket-fit and can be connected to 

the internet for real-time data transmission to remote servers. 

Organizations like Hamamatsu [88], Texas instruments (Texas 

Instruments Inc., Texas, USA) and consumer physics [89] have 

developed such “palm-sized” spectrophotometers which can be 

used for real-time quality checks, agri-food authentication and 

identification. In fact, Hamamatsu Photonics has developed the 

world’s smallest “fingertip size” micro-spectrophotometer 

which is ultra-compact, lightweight and low-cost device. The 

micro-spectrophotometer offers measurement in the visible 

wavelength range and can be used for applications such as color 

sensing, point-of-care testing connected to smartphones, and 

other types of portable measurement. 

The large amount of data necessitates remote data analysis 

on powerful computers for receiving real-time insights 

regarding the product on compact UV-Vis-NIRS devices or say, 

mobile phones of a consumer. Thus, such technologies offer an 

opportunity to develop real-time composition and quality 

assessment methods. To exemplify the significance of 

emerging UV-Vis-NIRS IoT platforms, let us consider a typical 

quality monitoring scenario in a flour storage facility. 

Traditionally, to check the authenticity of wheat flour, a safety 

inspector would perform sampling followed by time-

consuming offline analysis. However, the situation demands for 

a rapid decision at the storage facility. Similar situations could 

arise when real-time decisions are to be sought regarding 

quality or authenticity of agri-food products. The duo of UV-

Vis-NIRS as IoT sensors and big data methods can provide a 

robust solution to such situations by availing real-time product 

information such as detection of adulteration, allergen 

detection, geographic origin and composition. 

Tellspec is a data company which has combined NIR 

spectroscopy, bioinformatics techniques and learning 

algorithms for real-time analysis of consumer foods at the 

molecular level [90]. The system includes Tellspec’s food 

sensor which is based on the technology from Texas 

instruments, a cloud-based patented analysis engine and a 

mobile app that work together to scan foods, identify 

ingredients and provide details about the food scanned. Tellspec 

has conducted various studies with respect to food quality, 

authentication and characterization. Tellspec evaluated a 

handheld NIR scanner for simultaneous prediction of melamine 

and urea in wheat gluten samples [91]. In another study, the 

handheld NIR scanner was successfully employed for detection 

of beef aging combined with the differentiation of tenderloin 

and sirloin [92]. 

SCiO is a technology developed by Consumer physics which 

combines two integrated technological components: the Sensor 

and the Cloud [89]. The SCiO sensor’s optical head is only a 

few millimeters in size; provides high sensitivity and accuracy. 

It has low power consumption and zero warm up time which 

makes it highly responsive and extremely efficient. The SCiO 

cloud provides the analytical processing power and hosts the 

material databases. The SCiO cloud hosts the chemometric 

models and algorithms that analyze spectra and convert them 

into useful material data. Chemometric models run on a linearly 

scalable architecture, which allows to provide fast response 

times to a practically infinite number of users and devices. 

C. Spectroscopy and sensor fusion 

The intelligent convergence and processing of data from 

multiple sensors for making a process autonomous, is 

commonly referred to as “sensor fusion”. The results of 

efficient sensor fusion are almost always better than those 

obtained from the interpretation of data from individual sensors. 

In a recent EU-funded project named “MUSE-Tech”, the 

fusion of state-of-the-art sensing technologies (photoacoustic 

spectroscopy, quasi imaging UV-Vis spectrometry and 

distributed temperature sensing) was demonstrated to improve 

the handling of raw and in-process materials in food 

manufacturing. The project developed a multisensor device that 

can react in real time to variations in raw material and 

processing conditions to optimise the quality and safety of 

processed foods. For instance, one leg of the project focussed 

on reducing the risk of developing the toxic polar compound(s) 

such as acrylamide in starchy foods (e.g. potato chips) during 

cooking by specifying the guidelines for frying time and 

temperature. A computer vision system was developed for on-

line inspection of potato chips and frying oil quality with 

industrial settings. The chips were classified according to 

colour, oil uptake, polar matter, and acrylamide levels using 

NIR and imaging sensors. The relevant datasets from the 

network of such sensors, the IoT, can be clustered to a cloud 

portal and mined to assist in regulating quality standards [93] 

within the industry 4.0 framework. 

The future of agri-food quality and authenticity looks bright 

under the influence of IoT and big data. Advancements in 

micro-fabrication and miniaturization of optical systems has led 

to the development of “palm-sized” or even “fingertip-sized” 

spectroscopic devices. Moreover, constant improvement in 

chemometrics has helped in extracting further relevant 

information from the acquired spectral data. Overall, UV-Vis-

NIRS based IoT, in collaboration with big data offers a valuable 

and robust quality and authenticity monitoring tool for the agri-

food sector. 
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VII. FOOD SAFETY 

A. Big Data and Foodborne outbreaks 

 Food safety from farm to fork has emerged as an 

international priority for all the stakeholders around the globe. 

The recent foodborne outbreaks of fresh produce in the United 

States, with two large occurrences of Escherichia coli 

contaminated romaine lettuce in 2018, a lot of food (which also 

included large quantities of the safe produce) was dumped to 

protect public health [94]. Knowing that the demand for food is 

expected to increase by 50% from 2012 to 2050 [95], the current 

practices to defending public health from foodborne outbreaks 

might not be the viable option of the future. Realizing the 

significant economic impact of outbreaks, technological 

advancements and integrated measures from informatics can 

play a crucial role in mitigation of food safety risks and 

prevention of future outbreaks, saving millions and lives of 

many [96]. 

 A large amount of food safety data is created each day within 

the food industry and identifying means to extract robust 

information from different sources would support microbial 

risk assessment, prevention of outbreaks, identification of 

trends through pathogen surveillance; all that will facilitate 

food safety outcomes and decision making [96, 97]. Real-time 

monitoring of food during storage and transportation, digital 

labeling methods that are easy to synchronize to cloud 

information and enhanced traceability through blockchain are 

some of the many advantages that informatics can contribute to 

the future of food safety. 

 The key points in handling an outbreak are primarily focused 

on protecting public health and minimizing the damage. It 

includes identification of hazard, effective containment, and the 

mitigation of the risk in a limited time period. To limit the 

impact on public health, US Centers for Disease Control and 

Prevention (CDC) has web-based tools, FoodNet, PulseNet, 

and GenomerTrakr to quickly identify and contain food borne 

illness outbreak. The FoodNet is the Foodborne Diseases 

Active Surveillance Network that tracks trends for infections 

transmitted commonly through food; PulseNet uses DNA 

fingerprinting to identify patients and find clusters of disease 

that might represent potential outbreaks; and GenomeTrakr is a 

FDA managed database that contains information of foodborne 

bacterial germs from food products and the environment, with 

27 domestic and 3 international laboratory sites [98]. The 

pathogen is isolated from the samples collected from sick 

people and DNA fingerprinting is conducted to get the Whole 

Genome Sequence of the pathogen. The data collected from 83 

laboratories (PulseNet Network) in the United States is 

analyzed and matches are detected using Foodborne Disease 

Outbreak Surveillance System (FDOSS). CDC’s division of 

Foodborne, Waterborne and Environmental diseases extracts 

the information from these web tools using the big data 

analytics and identify trends in foodborne illnesses [99]. Also, 

CDC has an international database called PulseNet 

International and partners with Canada, Europe, Asia Pacific, 

Africa, Middle East, Latin America, and the Caribbean, to share 

WGS information through global laboratory networks and 

support foodborne disease surveillance and outbreak response 

[100]. PulseNet impacts public health by identifying the 

fingerprints of the pathogen (Whole Genome Sequence) from 

the sick people and find clusters of similar information to 

isolate an unrecognized outbreak [101]. 

 WHO has recently ventured towards big data analytics to 

support decision making in global food safety outbreaks via a 

food safety platform called “FOSCOLLAB” [102]. This 

platform encompasses data (structured and unstructured) 

derived from evaluations of Joint FAO/ WHO Expert 

Committee on Food Additives (JECFA), Joint FAO/WHO 

Meeting on Pesticide Residues (JMPR), and Global 

Environment Monitoring System (GEMS) databases, among 

others to cover multiple segments viz., animal, agriculture, 

food, public health, and economics which are integrated and 

accessible to all stakeholders. 

B. Whole Genome Sequencing 

 In the recent past, phenomenal advancements have been 

made in the field of Whole Genome Sequencing (WGS) and has 

gained significant acceptance in food industry in surveillance 

of foodborne outbreaks. It is a genomic tool to determine the 

genetic makeup of microbes by reading the unique DNA 

sequence of the sample. WGS has replaced use of traditional 

microbial typing techniques including pulsed-field gel 

electrophoresis (PFGE) and multi-locus variable number 

tandem repeat analysis (MLVA) with superior sensitivity, 

specificity, and higher resolution to outbreak clustering [100, 

103-105]. The traditional methods unlike WGS have never been 

used for real-time surveillance of foodborne illnesses [105]. 

The process of characterization of DNA isolates from 

pathogenic organisms is more efficient with WGS, and thus 

supports rapid detection of outbreaks and timely containment 

of illness to protect public health. The microbial DNA 

sequencing can be done using platforms such as Illumina, Ion 

Torrent, PacBio, and Nano-pore [106]. The three commonly 

used analysis methods used to process WGS data are k-mer, 

Single Nucleotide Polymorphisms (SNP), and multi-locus 

sequencing typing (MLST) (also called gene-by-gene based 

method), and is used by PulseNet International [100].  

 Sharing of WGS data among the leading food regulatory 

agencies of the world will enhance the surveillance and 

prevention of epidemic diseases and outbreak globally. The 

United States Food and Drug Administration (USFDA) has 

pioneered to offer WGS data sharing through GenomeTrakr 

with other potential agencies worldwide to accommodate 

regulatory and compliance activities [107]. The European 

COMPARE project (COllaborative Management Platform for 

detection and Analyses of (Re-) emerging and foodborne 

outbreaks in Europe) is working on to sharing WGS data and 

analysis, to speed up detection and response to human and 

animal disease outbreaks worldwide (https://www.compare-

europe.eu/) [100]. For the complete implementation of WGS 

based worldwide surveillance of outbreaks, several challenges 

need to be met including technical (WGS sharing, standardized 

subtyping) and political limitations. The international efforts to 

minimize the effects of foodborne illnesses and prevent 

foodborne outbreaks can enormously benefit from WGS based 

surveillance, thereby supporting the health demands of the 

public. 
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 An example of the synergistic impression of genome 

sequencing and big data analytics on food safety is a 

collaboration between IBM Research and Mars, Inc., that 

focused on sequencing and constructing of a genomic database 

of bacterial species across global supply chains (see Fig. 7 for 

a graphical summary). The main essence of this project is the 

building of a genetic index of normal bacterial species that are 

natural inhabitants of food ingredients and pairing them with 

genetic fingerprints of food ingredients and their environments 

to capture the anomalies. Using big-data methods and bio-

informatics algorithms, researchers constructed and aggregated 

terabytes of genomic data to identify the active genes and 

metabolic processes in the food ingredients. The index 

produced from this study will serve as a benchmark 

representing the normal microbial communities of food 

ingredients with geographical variations. This would facilitate 

the identification of genomic fingerprints of healthy food, equip 

food regulatory officials with rapid and precise information to 

assess the irregularities in food samples that show the presence 

of spoilage/pathogenic bacteria and design the most appropriate 

tests and standard operating procedures. Presumably, this will 

also deliver critical understanding of anticipated causes of food 

spoilage/hazards that can be fixed at the point of incidence and 

allow appropriate strategies to be amended [108]. 

 Next Generation Sequence (NGS) is one of the latest 

advancement in genome sequencing that is widely accepted in 

food microbiology world for outbreak investigations, food 

authenticity, and antimicrobial resistance [109]. The new 

technique uses whole genome sequencing, metagenomics, and 

amplicon sequencing (metabarcoding). WGS will answer the 

phenotypic characteristic of growth and inactivation of an 

isolate; however, knowing that these phenotypic factors can 

vary at transcriptional and post-transcriptional level, multi-

omics approach may be the need of future to precisely 

characterize the pathogen isolates [106]. 

 The vital challenge to implementation of WGS data analysis 

and potential opportunities to safeguard the food supply chain 

worldwide is the privacy of data among the leading companies. 

Not enough legal measures are in place to protect the companies 

from regulatory actions, putting reputation and equity at stake, 

that ultimately insists companies to limit data sharing. Other 

challenges include correct interpretation of data, legal 

infrastructure, and data ownership [106]. 

 Beyond genomic information, there are other equally 

important factors that can be used to establish the source of 

contamination. The combination of socio-environmental 

information and whole-genome sequencing of prevailing and 

historical isolates were used by Gardy, et al. [110] to ascertain 

the point of origin of a tuberculosis outbreak. Although the 

collected data were not colossal (36 isolates), the variety of data 

was important which was amplified by social listening and 

networking with patients. Some investigators applied an 

interesting approach of proactive geospatial modelling to food 

logistics to recognize the traders involved in the dispersal of 

contaminated food [111]. The model encompassed the 

distribution network of traders, population density, locations, 

and consumer behaviour to predict the 

probability of food safety outbreaks or 

recall. In another interesting investigation, 

the reviews of online restaurant customers 

[112] were analysed for key words 

pertaining to ‘food poisoning’. The 

outcome of the study was related to the 

outbreak control database of Center for 

Disease Control and Prevention. They 

concluded that this type of assessments 

could complement the traditional 

surveillance systems in providing real time 

outbreak information. The potential of IoT 

to augment food surveillance systems are 

up-lifting and acting synergistically with 

big data analytics as a rapid salvage to food 

safety outbreaks [113]. It is anticipated that 

IoT would be advantageous to implement 

a holistic approach in food safety where 

key drivers viz., climate change, economy, 

and human behaviour could be combined to envisage food 

safety risks. 

C. Traceability 

 The inability of the food regulatory agencies to identify the 

origin of contamination in foodborne outbreaks shatters the 

public trust in the food supply chain significantly. As an 

example during the Spinach outbreak of 2006, it took two 

weeks to isolate the contaminant and ample resources were 

expended [114]. Another recent instance includes the romaine 

lettuce outbreak of 2018 where all the lettuce was pulled off the 

shelves without knowing the origin of contamination. All 

lettuce was discarded due to inefficient back-tracing by the food 

regulatory agencies. The FDA issued a recall after 67 days since 

the first person reported sickness due to consumption of 

romaine lettuce [94] (See Fig. 8). The inability to trace products 

comes from inadequate record keeping methods in place such 

as the widely accepted “One Up, One Down – OUOD 

approach”. One can only hold responsible the immediate 

supplier and the immediate buyer up and down the supply 

chain, and in times of outbreak investigations, it takes days to 

connect the records and identify the source of contamination. 

This leads to degradation of consumer trust and results in 

significant setback to produce growers (such as spinach and 

Fig. 7. Process flow to build genetic index of food and its normal microbiome. Adapted from 

Beck, et al. (2019). 
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lettuce growers). To address this issue, blockchain technology 

can be introduced. Introduction of blockchain will enable rapid 

and accurate traceability, reducing cost from food losses and  

saving precious human lives [114, 115]. 

 

 
Figure 8 The timeline of events that led to recalls following the 

romaine lettuce outbreak of 2018. 

 Blockchain technology is a success in the cryptocurrency 

world, since its launch in 2008. Blockchain is known for its 

digital decentralized ledger system that does not require a 

trusted intermediary for transactions [116]. The blockchain 

technology is essentially a database of records stored in the 

form of ‘blocks’, shared among all members of the group, 

resistant to data modification, and can be accessed at any time 

in the future [117]. Similar approach can be extended to a food 

supply chain where information like production data of food, 

origin, storage and shipping temperatures, expiry date, etc. can 

be digitally stored in a database (see Fig. 9(A)). This will enable 

rapid identification of an outbreak or authenticity of food 

(kosher, organic) [116]. The numerous actors involved in the 

food supply chain make it challenging to keep records and keep 

track of food items. 

 Blockchain can potentially provide solution to this issue and 

can assist with implementing food safety, food security, and 

food integrity measures, while bringing transparency and 

accountability to the supply chain [118]. A Study conducted by 

Walmart and IBM to trace sliced mangoes from South and 

Central America to North America exposed the potential 

benefits of blockchain, highlighting the significant gap in the 

current traceability procedures [119, 120]. Two different supply 

chains were studied; pork in china and mangoes in the USA. 

The traditional method of traceability took 7 days to connect the 

supply chain from consumer to the origin of the mangoes. 

However, when the same data was fed to blockchain, it 

delivered information within 2.2 seconds [114] (See Fig. 9 (B)). 

 In agricultural logistics, big data analytics could be used to 

predict the occurrence of food hazards by linking the biotic or 

abiotic information to the growth and probabilistic occurrence 

of pathogens and toxicants. For instance, close monitoring of 

biotic and abiotic conditions in crops field has been reported to 

help identify the areas of increased incidence of aflatoxins 

before the harvested crop could enter the food chain [121]. IoT 

in food logistics, enabled by GPS, RFID, and other sensor-

based tracking and traceability, are key to ensure rapid recalls 

and real-time data collection of food attributes at the site. The 

Cheesecake Factory, a large U.S. restaurant chain, routinely 

gathers and transmit data on transportation temperature, shelf 

life, and food recalls, which is subsequently analysed by IBM’s 

data analytics solutions before significant information can be 

shared across its logistic chain [122]. Walmart uses a 

Sustainable Paperless Auditing and Record Keeping (SPARK) 

system that automatically uploads data pertaining key food 

attributes to an online database. This allows Walmart to keep a 

check on food product quality, like internal cooking 

temperature of rotisserie chickens, to isolate uncooked product 

for future inspection by health officers and private investigators 

[123]. In an investigation by Van der Fels-Klerx, et al. [124], 

quantitative models and databases were leveraged to forecast 

the mycotoxin deoxynivalenol (DON) contamination of wheat 

in north-western Europe. Likewise, farm-based 

characterization of pathogens combined with environmental 

and meteorological data allowed the presence of Listeria 

monocytogenes pathogen to be predicted [125]. 

VIII. FUTURE TRENDS, CHALLENGES AND NEEDS 

 IoT, Big data handling and computation: The massive 

amount of data generated from IoT devices and social media 

generally demands appropriate infrastructure to store, process 

or analyse, and instruct appropriate automated actions based on 

the insights obtained. Because of the cost associated with such 

infrastructure, the ‘platform as a service’ business model is 

Fig. 9 (A) The concept of blockchain technology as applied to food supply chain for traceability and outbreak detection. (B) The traceability 

time in the farm to fork chain will be practically eliminated through the implementation of blockchain ledger. 
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becoming increasingly popular. Examples of some of the top 

IoT platforms on the market today include, Amazon Web 

Services (AWS), Microsoft Azure, ThingWorx IoT Platform, 

IBM's Watson, Cisco IoT Cloud Connect, Salesforce IoT 

Cloud, Oracle Integrated Cloud, and GE Predix. With the cost 

of sensors projected to plummet and the need for cloud 

computing expected to rapidly peak, database management, 

cloud computing, and analytics as a service are expected to be 

the future business models of choice. 

 Agriculture: The cost of data acquisition in data-driven 

agriculture continues to remain very high, thereby significantly 

decreasing the impact of IoT and artificial intelligence in 

increasing agricultural productivity. This situation can only 

improve through innovations leading to inexpensive sensing 

technologies, which does not appear to become a reality in the 

immediate future. As the partnership between the big data 

technology industry and the farming community progresses, the 

question of who holds and owns the data will remain a top 

priority for farmers as well the technology companies. 

The use of advanced technologies in agriculture is limited to 

highly developed countries, while most farmers across the rest 

of world are struggling to survive. The advanced technologies 

are generally suited to the needs of large factory-farms, like 

those present in north America or Europe. This implies that 

internet-based technologies cannot emerge as influential drivers 

in changing the global agricultural productivity. Therefore, the 

success of these technologies in developing and 

underdeveloped countries can only by improved through strong 

political willpower leading to governmental support to the 

farmers. 

 Social media: Social media and personal level data is slowly 

becoming the new “most valuable resource” of this era. New 

challenges are emerging such as the concerns over data privacy 

raised by consumers and businesses, cyber-attacks, use of bots 

and fraudulent social media accounts by anti-enterprise bodies 

to negatively affect the reputation of companies and promote 

marketing of counterfeit/fake products on the world-wide web. 

Therefore, digital teams of companies must constantly innovate 

to proactively tackle adverse situations and handle mishaps on 

social platforms. 

 Food supply-chain modernization: Quantitative studies on 

the benefits of IoT in supply-chain are yet to be carried out. IoT 

integration with food business processes for control of the 

supply chain is a challenging topic that needs further study on 

a case by case basis. In general, IoT implementation in the food 

supply-chain business is being rapidly improved considering 

that product-level tracking using sensors was a familiar concept 

to this sector. The decentralized food diversion and 

consignment redirection based on shelf-life prediction are the 

new trends which are expected to grow. These developments 

will help to significantly reduce the food wastage. It is likely 

that end-to-end supply chain traceability in agri-food industry 

will be achieved in future via technology implementations that 

differ slightly from blockchain methodologies due to the 

involvement of several stakeholders and actors, including end-

consumers. 

 Food quality via spectral data: At present, hyperspectral 

cameras and UV-Vis spectrophotometers are being used more 

commonly in the food industry for quality monitoring purposes 

than ever before. Tech start-ups are producing consumer 

focussed pocket-size spectral devices considering health 

conscious mindset of millennials. Miniaturized and faster 

hyperspectral cameras are being actively designed and 

developed keeping the needs of the industry in mind. Currently, 

a pocket-size spectral sensor costs as low as USD 300, but can 

be priced at USD 100,000 for commercial spectrophotometers. 

Cost of hyperspectral cameras is prohibitively high with 

starting prices of approximately USD 20,000 and can reach to 

several million dollars depending on the specifications. Further, 

the databases of spectral features for foods is also evolving and 

far from commercial acceptability. While similar issues are 

being rapidly resolved for field applications in precision 

agriculture, the food industry is significantly lagging. 

Nevertheless, the demand for spectral technologies is envisaged 

to continue to grow for food applications. 

 Food safety: With the recent change in food safety 

regulations, focus has changed from reaction and response to 

prediction and prevention. The current food safety challenges 

require comprehensive and organized ways to address future 

foodborne outbreaks with gathering and examining large 

volumes of genetic information for early identification of food 

safety issues. Future food safety challenges insist stakeholders 

to develop better methods of tracing food supply chains 

protecting food and public health. Ensuring the safety of food 

would be key to the future of sustainable agriculture meeting 

high food demands of the world. Science-based decision 

making and the use of advanced technologies (whole genome 

sequencing, blockchain, and digital process data logging) 

would play a crucial role in gathering critical information from 

around the world and connecting various disease and outbreak 

databases to enhance the food safety. The future food safety 

measures demand better digital innovations to make the food 

supply chain safer and secured, with better traceability and 

accountability. 

 Data Ownership, privacy and security: The growing 

digital trend in agri-food space in the form of cloud computing, 

IoT and big data also comes with new challenges when it comes 

to cybersecurity. This is because, technologies like data 

platforms, wireless sensor networks, RFID, GPS, business 

management systems can be vulnerable to breakdown, abuse 

and misuse [126]. A breach of data security could be fatal to 

companies in terms of loss of business or reputation. While 

software companies constantly release updates to their 

applications and data platforms, updating is a very difficult task 

in some cases, for example, process control software. In 

addition, power failure is a common issue causing outages in 

farm-based IT systems.  

 While the use of data for AI approaches is seen as highly 

rewarding, there also exist many concerns, issues and 

unaddressed questions around data ownership and privacy to be 

addressed. Since there is no guarantee that leakage of data upon 

sharing can be overruled, companies are hesitant to participate 

in AI efforts. Likewise, farmers, consumers, and smaller 

players in business are often left in dilemma with regards to 

their privacy or monetary share, should the data be used for 

commercial benefit. With regards to data ownership, 

blockchain being a peer-to-peer network that allows each 

participant to own his data and be involved in trade could 

prevent data monopoly. Efforts are needed to standardize the 

protocols used in blockchain technology for its mass-adoption, 
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and its integration with AI for ensuring strong data 

immutability, greater transparency and enhanced security. 

Smart contracts for data sharing and strong algorithms for data 

privacy are two important ways which can ensure that data’s 

value is distributed without losing trust of the parties involved. 

IX. CONCLUSIONS 

 IoT is recognized as one of the most important areas of future 

technology and is gaining considerable attention from a wide 

range of industries. With the implementation of IoT 

infrastructure in farming, farmers will be more efficient, 

intelligent and connected, feeding vast amounts of information 

to analysts regarding crop yields, soil mapping, fertilizer 

applications, weather data, machinery and animal health. The 

use of sensors is steadily increasing in early reporting of issues 

pertinent to crop health in farms, thereby enabling early checks 

for public health and safety. Efforts leading to easy integration 

of various IoT devices in terms of data and instruction flow 

from farm to consumer chain is important to obtain a viable and 

efficient IoT system. 

 The food supply-chain industry is at the forefront of IoT 

adoption to track the consignments and re-route them in real-

time. Food quality and authenticity evaluation using miniature 

spectral cameras has become popular in the industry and efforts 

are underway to bring this capability to consumers through their 

smartphones. The industry is also exploring the benefits of 

blockchain technology and next generation genome sequencing 

for traceability in case of pathogen outbreaks and to ensure food 

safety. The huge volumes of data from social media is being 

analysed for consumer behaviour and crowdsourcing of ideas 

for new food product development. 

 In conclusion, the key performance indices that IoT and big 

data technologies will be potentially impacting are economical 

(e.g. increased productivity, lower production cost, and higher 

quality), environmental (e.g. less resource consumption, lower 

emission and carbon footprint) as well as social (e.g. improved 

public health, consumer demand driven, quality of life 

improvement). The pace of innovations in the field of IoT, big 

data, and AI are astounding and tasks that seemed impossible a 

few years ago have now been implemented with great success. 

Embracing the technology innovations and putting them to 

advantage are important for success of modern agriculture and 

food industry. 
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