
Compute Solution for
Tesla’s Full Self-Driving
Computer
Emil Talpes, Debjit Das Sarma,

Ganesh Venkataramanan, Peter Bannon,

Bill McGee, Benjamin Floering, Ankit Jalote,

Christopher Hsiong, Sahil Arora,

Atchyuth Gorti, and Gagandeep S. Sachdev

Autopilot Hardware, Tesla Motors Inc.

Abstract—Tesla’s full self-driving (FSD) computer is the world’s first purpose-built computer

for thehighlydemandingworkloadsof autonomousdriving. It is basedonanewSystemona

Chip (SoC) that integrates industrystandardcomponentssuchasCPUs, ISP,andGPU, together

withourcustomneuralnetworkaccelerators.TheFSDcomputer iscapableofprocessingup to

2300 framesper second,a21� improvementoverTesla’sprevioushardwareandata lower

cost, andwhen fully utilized, enablesanew level of safetyandautonomyon the road.

PLATFORM AND CHIP GOALS
& THE PRIMARY GOAL of Tesla’s full self-driving

(FSD) computer is to provide a hardware platform

for the current and future data processing

demands associated with full self-driving. In addi-

tion, Tesla’s FSD computer was designed to be ret-

rofitted into any Tesla vehicle made since October

2016. This introduced major constraints on form

factor and thermal envelope, in order to fit into

older vehicleswith limited cooling capabilities.

The heart of the FSD computer is the world’s

first purpose-built chip for autonomy. We pro-

vide hardware accelerators with 72 TOPs for neu-

ral network inference, with utilization exceeding

80% for the inception workloads with a batch size

of 1. We also include a set of CPUs for control

needs, ISP, GPU, and video encoders for various

preprocessing and postprocessing needs. All of

these are integrated tightly to meet very aggres-

sive TDP of sub-40-W per chip.

The system includes two instances of the FSD

chip that boot independently and run indepen-

dent operating systems. These two instances

also allow independent power supply and sen-

sors that ensure an exceptional level of safety

Digital Object Identifier 10.1109/MM.2020.2975764

Date of publication 24 February 2020; date of current version

18 March 2020.

Theme Article: Hot ChipsTheme Article: Hot Chips

March/April 2020 Published by the IEEE Computer Society 0272-1732 � 2020 IEEE 25
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

for the system. The computer as shown in

Figure 1 meets the form, fit, and interface level

compatibility with the older hardware.

FSD CHIP
The FSD chip is a 260-mm2 die that has about

250 million gates or 6 billion transistors, manu-

factured in 14-nm FinFet technology by Samsung.

As shown in Figure 2, the chip is packaged in a

37.5 mm � 37.5 mm Flip Chip BGA Package. The

chip is qualified to AEC-Q100 Grade2 reliability

standards.

Figure 2(a) shows themajor blocks in the chip.

We designed the two instances of neural-network

accelerator (NNA) from scratch and we chose

industry standard IPs such as A72 CPUs, G71

GPU, and ISPs for the rest of the system. Rest of

the unmarked area of the

chip consists of periph-

erals, NOC fabrics, and

memory interfaces. Each

NNA has 32-MB SRAM and

96 � 96 MAC array. At 2

GHz, each NNA provides

36 TOPs, adding up to 72

TOPs total for the FSD

chip.

The FSD SoC, as shown

in Figure 2(b), provides

general-purpose CPU

cores that run most of the

autopilot algorithms.

Every few milliseconds,

new input frames are received through a dedi-

cated image signal processor where they get pre-

processed before being stored in the DRAM.

Once new frames are available in the main mem-

ory, the CPUs instruct the NNA accelerators to

start processing them. The accelerators control

the data and parameters streaming into their

local SRAM, as well as the results streaming back

to the DRAM. Once the corresponding result

frames have been sent out to theDRAM, the accel-

erators trigger an interrupt back to the CPU com-

plex. The GPU is available for any postprocessing

tasks that might require algorithms not sup-

ported by the NNA accelerators.

Chip Design Methodology

Our design approach was tailored to meet

aggressive development timelines. To that end, we

Figure 1. FSD Computer with two Tesla FSD chips in dual configurations including sensors

like Cameras.

Figure 2. (a) FSD chip die photo with major blocks. (b) SoC block diagram.

Hot Chips

26 IEEE Micro

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

decided to build a custom accelerator since this

provides the highest leverage to improve perfor-

mance and power consumption over the previous

generation. We used hard or soft IPs available in

the technology node for the rest of the SoC blocks

to reduce the development of schedule risk.

We used a mix of industry-standard tools and

open source tools such as verilator for extensive

simulation of our design. Verilator simulations

were particularly well suited for very long tests

(such as running entire neural networks), where

they yielded up to 50� speedup over commer-

cial simulators. On the other hand, design com-

pilation under verilator is very slow, so we relied

on commercial simulators for quick turnaround

and debug during the RTL development phase.

In addition to simulations, we extensively used

hardware emulators to ensure a high degree of

functional verification of the SoC.

For the accelerator’s timing closure, we set a

very aggressive target, about 25% higher than

the final shipping frequency of 2 GHz. This allows

the design to run well below Vmax, delivering

the highest performance within our power bud-

get, as measured after silicon characterization.

NEURAL NETWORK ACCELERATOR

Design Motivation

The custom NNA is used is to detect a prede-

fined set of objects, including, but not limited to

lane lines, pedestrians, different kinds of vehicles,

at a very high frame rate and with modest power

budget, as outlined in the platform goals.

Figure 3 shows a typical inception convolu-

tional neural network.1,2 The network has many

layers and the connections indicating flowof com-

pute data or activations. Each pass through this

network involves an image coming in, and various

features or activations, being constructed after

every layer sequentially. An object is detected

after the final layer.

As shown in Figure 3, more than 98% of all

operations belong to convolutions. The algo-

rithm for convolution consists of a seven deep

nested loop, also shown in Figure 3. The compu-

tation within the innermost loop is a multiply-

accumulate (MAC) operation. Thus, the primary

goal of our design is to perform a very large num-

ber of MAC operations as fast as possible, with-

out blowing up the power budget.

Speeding up convolutions by orders of mag-

nitude will result in less frequent operations,

such as quantization or pooling, to be the bottle-

neck for the overall performance if their perfor-

mance is substantially lower. These operations

are also optimized with dedicated hardware to

improve the overall performance.

Convolution Refactorization and Dataflow

The convolution loop, with some refactoring,

is shown in Figure 4(a). A closer examination

reveals that this is an embarrassingly parallel

problemwith lots of opportunities to process the

MAC operations in parallel. In the convolution

loop, the execution of the MAC operations within

the three innermost loops, which determine the

length of each dot product, is largely sequential.

However, the computation within the three outer

loops, namely for each image, for each output

channel, for all the pixels within each output

channel, is parallelizable. But it is still a hard

problem due to the large memory bandwidth

requirement and a significant increase in power

consumption to support such a large parallel

computation. So, for the rest of the paper, we will

focusmostly on these two aspects.

First thing to note is that working on multiple

images in parallel is not feasible for us. We can-

not wait for all the images to arrive to start the

Figure 3. Inception network, convolution loop, and execution profile.

March/April 2020 27
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

compute for safety reasons since it increases the

latency of the object detection. We need to start

processing images as soon as they arrive.

Instead, we will parallelize the computation

across multiple-output channels and multiple-

output pixels within each output channel.

Figure 4(a) shows the refactored convolution

loop, optimizing the data reuse to reduce power

and improve the realized computational band-

width. We merge the two dimensions of each

output channel and flatten them into one dimen-

sion in the row-major form, as shown in step (2)

of Figure 4(a). This provides many output pixels

to work on, in parallel, without losing local conti-

guity of the input data required.

We also swap the loop for iterating over the

output channels with the loop for iterating over

the pixels within each output channel, as shown

in steps (2) and (3) of Figure 4(a). For a fixed

group of output pixels, we first iterate on a subset

of output channels before we move onto the next

group of output pixels for the next pass. One

such pass, combining a group of output pixels

within a subset of output channels, can be per-

formed as a parallel computation. We continue

this process until we exhaust all pixels within the

first subset of output channels. Once all pixels

are exhausted, we move to the next subset of

output channels and repeat the process. This

enables us to maximize data sharing, as the

computation for the same set of pixels within all

output channels use the same input data.

Figure 4(b)–(d) also illustrates the dataflow

with the above refactoring for a convolution

layer. The same output pixels of the successive

output channels are computed by sharing the

input activation, and successive output pixels

within the same output channel are computed

by sharing the input weights. This sharing of

data and weights for the dot product computa-

tion is instrumental in utilizing a large compute

bandwidth while reducing the power by mini-

mizing the number of loads to move data

around.

Compute Scheme

The algorithm described in the last section

with the refactored convolution lends itself to a

compute scheme with the dataflow as shown in

Figure 5. A scaled-down version of the physical

96 � 96 MAC array is shown in the middle for the

brevity of space, where each cell consists of a

unit implementing a MAC operation with a single

cycle feedback loop. The rectangular grids on

the top and left are virtual and indicate data

flow. The top grid, called the data grid here,

shows a scaled-down version of 96 data elements

in each row, while the left grid, called the weight

grid here, shows a scaled-down version of 96

weights in each column. The height and width of

Figure 4. Convolution refactoring and dataflow.

Hot Chips

28 IEEE Micro

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

the data and weight grids equal the length of the

dot-product.

The computation proceeds as follows: the

first row of the data grid and the first column of

the weight grid are broadcast across all the 96

rows and 96 columns of the MAC array, respec-

tively, over a few cycles in a pipelined manner.

Each cell computes an MAC operation with the

broadcast data and weight locally. In the next

cycle, the second row of the data grid and the

second column of the weight grid are broadcast

in a pipelined manner, and the MAC computation

in each cell is executed similarly. This computa-

tion process continues until all the rows and col-

umns of the data and weight grids have been

broadcast and all the MAC operations have fin-

ished. Thus, each MAC unit computes the dot-

product locally with no data movement within

the MAC array, unlike the systolic array compu-

tations implemented in many other process-

ors.3,4 This results in lower power and less cell

area than systolic array implementations.

When all the MAC operations are completed,

the accumulator values are ready to be pushed

down to the SIMD unit for post-processing. This

creates the first 96 � 96 output slice as shown in

Figure 5. The postprocessing, which most com-

monly involves a quantization operation, is per-

formed in the 96-wide SIMD unit. The 96-wide

SIMD unit is bandwidth matched with the 96 ele-

ment accumulator output associated with each

output channel. Accumulator rows in the MAC

array are shifted down to the SIMD unit at the

rate of one row per cycle. Physically, the accumu-

lator rows shift only once every eight cycles, in

groups of eight. This reduces the power con-

sumed to shift the accumulator data significantly.

Another important feature in the MAC engine

is the overlap of the MAC and SIMD operations.

While accumulator values are being pushed

down to the SIMD unit for postprocessing, the

next pass of the convolution gets started immedi-

ately in theMAC array. This overlapped computa-

tion increases the overall utilization of the

computational bandwidth, obviating dead cycles.

Design Principles and Instruction Set

Architecture

The previous section describes the dataflow

of our computation. For the control flow, we

focused on simplicity and power efficiency. An

average application executed on modern out-of-

order CPUs and GPGPUs 5–7 burns most of the

energy outside of the computational unit to

move the instructions and data and in the expen-

sive structures such as caches, register files, and

branch predictors.8 Furthermore, such control

structures also introduce significant design com-

plexity. Our goal was to design a computer

where almost all the profligate control struc-

tures are eliminated, and the execution of the

workloads spend all the energy on what matters

most for performance, the MAC engine. To that

end, we implemented a very flexible yet profi-

cient state machine where all the expensive con-

trol flows are built into the state machine, such

as loop constructs and fusion.

Another very important performance and

power optimization feature is the elimination of

DRAM reads and writes during the convolution

flow. For inference, the output data of each layer

is consumed by dependent layers and can be

overwritten. After loading the initial set of activa-

tion data, this machine operates entirely from an

SRAM embedded in the compute engine itself.

This design philosophy is outlined in the

final section. We trade off fine-grain programma-

bility that requires expensive control structures

for a flexible state machine with coarse grain

programmability. The state machine driven

control mechanism lends itself to a very com-

pact yet powerful and flexible ISA. There are

only seven main instructions, with a variety

of additional control fields that set up the

state machine to perform different tasks: data

Figure 5. Compute scheme.

March/April 2020 29
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

movement in and out of the SRAM (DMA-read

and DMA-write), dot product (CONVOLUTION,

DECONVOLUTION, INNER-PRODUCT), and pure

SIMD (SCALE, ELTWISE).

Data movement instructions are 32-byte longs

and encode the source and destination address,

length, and dependency flags. Compute instruc-

tions are 256-byte long and encode the input

addresses for up to three tensors (input activa-

tions and weights or two activations tensors, out-

put results), tensor shapes and dependency flags.

They also encode various parameters describing

the nature of computation (padding, strides, dila-

tion, data type, etc.), processing order (row-first

or column-first), optimization hints (input and

output tensor padding, precomputed state

machine fields), fused operations (scale, bias,

pooling). All compute instructions can be fol-

lowed by a variable number of SIMD instructions

that describe a SIMD program to be run on all

dot-product outputs. As a result, the dot product

layers (CONVOLUTION, DECONVOLUTION) can

be fused with simple operations (quantization,

scale, ReLU) or more complex math functions

such as Sigmoid, Tanh, etc.

NETWORK PROGRAMS
The accelerator can execute DMA and Com-

pute instructions concurrently. Within each kind,

the instructions are executed in order but can be

reordered between them for concurrency. The

producer/consumer ordering is maintained using

explicit dependency flags.

A typical program is shown in Figure 6. The

program starts with several DMA-read opera-

tions, bringing data and weights into the acceler-

ator’s SRAM. The parser inserts them in a queue

and stops at the first compute instruction. Once

the data and weights for the pending compute

instruction become available in the SRAM, their

corresponding dependency flags get set and the

compute instruction can start executing in paral-

lel with other queued DMA operations.

Dependency flags are used to track both data

availability and buffer use. The DMA-in operation

at step 6 overwrites one of the buffers sourced

by the preceding convolution (step 5) as shown

in Figure 6. Thus, it must not start executing

before its destination flag (F0) gets cleared at

the end of the convolution. However, using a dif-

ferent destination buffer and flag would allow

the DMA-in operation to execute in parallel with

the preceding convolution.

Our compiler takes high-level network rep-

resentations in Caffe format and converts them

to a sequence of instructions similar to the one

in Figure 6. It analyzes the compute graph and

orders it according to the dataflow, fusing or

partitioning layers to match the hardware

capabilities. It allocates SRAM space for inter-

mediate results and weights tensors and man-

ages execution order through dependency

flags.

Figure 6. Typical network program.

Hot Chips

30 IEEE Micro

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

NNA MICROARCHITECTURE
The NNA, as shown in Figure 7, is organized

around two main datapaths (dot-product engine

and SIMD unit) and the state machines that inter-

pret the program, generate streams of memory

requests, and control the data movement into

and out of the datapaths.

Dot Product Engine

As described in the “Compute Scheme” sec-

tion, the dot-product engine is a 96 � 96 array

of MAC cells. Each cell takes two 8-bit integer

inputs (signed or unsigned) and multiplies

them together, adding the result to a 30-bit

wide local accumulator register. There are

many processors that deploy floating-point

operations with single precision or half-preci-

sion floating-point (FP) data and weight for

inference. Our integer MAC compute has

enough range and precision to execute all

Tesla workloads with the desired accuracy and

consumes an order of magnitude lower power

than the ones with FP arithmetic.9

During every cycle, the array receives two

vectors with 96 elements each and it multiplies

every element of the first vector with every ele-

ment of the second vector. The results are accu-

mulated in place until the end of the dot product

sequence when they get unloaded to the SIMD

engine for further processing.

Each accumulator cell is built around two 30-

bit registers: an accumulator and a shift register.

Once a compute sequence is completed, the dot

product result is copied into the shift register

and the accumulator is cleared. This allows the

results to shift out through the SIMD engine

while the next compute phase starts in the dot

product engine.

SIMD Unit

The SIMD unit is a 96-wide datapath that can

execute a full set of arithmetic instructions. It

reads 96 values at a time from the dot product

engine (one accumulator row) and executes a

postprocessing operation as a sequence of

instructions (SIMD program). A SIMD program

cannot access the SRAM directly and it does not

support flow control instructions (branches).

The same program is executed for every group

of 96 values unloaded from the MAC array.

The SIMD unit is programmable with a rich

instruction set with various data types, 8-bit,

16-bit, and 32-bit integers and single-precision

floating point (FP32). The instruction set also

provides for conditional execution for control

flow. The input data is always 30-bit wide (cast

as int32) and the final output is always 8-bit

wide (signed or unsigned int8), but the interme-

diate data formats can be different than the

input or output.

Figure 7. NNA Microarchitecture.

March/April 2020 31
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

Since most common SIMD programs can be

represented by a single instruction, called Fuse-

dReLu (fused quantization, scale, ReLU), the

instruction format allows fusing any arithmetic

operation with shift and output operations. The

FusedReLu instruction is fully pipelined, allow-

ing the full 96 � 96 dot-product engine to be

unloaded in 96 cycles. More complex postpro-

cessing sequences require additional instruc-

tions, increasing the unloading time of the Dot

Product Engine. Some complex sequences are

built out of FP32 instructions and conditional

execution. The 30-bit accumulator value is con-

verted to an FP32 operand in the beginning of

such SIMD programs, and the FP32 result is con-

verted back to the 8-bit integer output at the end

of the SIMD program.

Pooling Support

After postprocessing in the SIMD unit, the

output data can also be conditionally routed

through a pooling unit. This allows the most fre-

quent small-kernel pooling operations (2 � 2 and

3 � 3) to execute in the shadow of the SIMD exe-

cution, in parallel with the earlier layer produc-

ing the data. The pooling hardware implements

aligners to align the output pixels that were rear-

ranged to optimize convolution, back to the orig-

inal format. The pooling unit has three 96-byte �
96-byte pooling arrays with byte-level control.

The less frequent larger kernel pooling opera-

tions execute as convolution layers in the dot-

product engine.

Memory Organization

The NNA uses a 32-MB local SRAM to store

weights and activations. To achieve high band-

width and high density at the same time, the

SRAM is implemented using numerous relatively

slow, single ported banks. Multiple such banks

can be accessed every cycle, but to maintain the

high cell density, a bank cannot be accessed in

consecutive cycles.

Every cycle the SRAM can provide up to 384

bytes of data through two independent read

ports, 256-byte and 128-byte wide. An arbiter pri-

oritizes requests from multiple sources (weights,

activations, program instructions, DMA-out, etc.)

and orders them through the two ports. Requests

coming from the same source cannot be

reordered, but requests coming from different

sources can be prioritized to minimize the bank

conflicts.

During inference, weights tensors are always

static and can be laid out in the SRAM to ensure

an efficient read pattern. For activations, this is

not always possible, so the accelerator stores

recently read data in a 1-kB cache. This helps to

minimize SRAM bank conflicts by eliminating

back-to-back reads of the same data. To reduce

bank conflicts further, the accelerator can pad

input and/or output data using different patterns

hinted by the network program.

Control Logic

As shown in Figure 7, the control logic is split

between several distinct state machines: Com-

mand Sequencer, Network Sequencer, Address

and Data sequencers, and SIMD Unit.

Each NNA can queue up multiple network

programs and execute them in-order. The Com-

mand Sequencer maintains a queue of such pro-

grams and their corresponding status registers.

Once a network runs to completion, the acceler-

ator triggers an interrupt in the host system.

Software running on one of the CPUs can exam-

ine the completion status and re-enable the net-

work to process a new input frame.

The Network Sequencer interprets the pro-

gram instructions. As described earlier, instruc-

tions are long data packets which encode enough

information to initialize an execution state

machine. The Network Sequencer decodes this

information and steers it to the appropriate con-

sumer, enforces dependencies and synchronizes

the machine to avoid potential race-conditions

between producer and consumer layers.

Once a compute instruction has been

decoded and steered to its execution state

machine, the Address Sequencer then generates

a stream of SRAM addresses and commands for

the computation downstream. It partitions the

output space in sections of up to 96� 96 elements

and, for each such section, it sequences through

all the terms of the corresponding dot-product.

Weights packets are preordered in the SRAM

to match the execution, so the state machine sim-

ply streams them in groups of 96 consecutive

bytes. Activations, however, do not always come

from consecutive addresses and they often must

Hot Chips

32 IEEE Micro

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

be gathered from up to 96 distinct SRAM loca-

tions. In such cases, the Address Sequencer must

generate multiple load addresses for each packet.

To simplify the implementation and allow a high

clock frequency, the 96-elements packet is parti-

tioned into 12 slices of 8 elements each. Each slice

is serviced by a single load operation, so the maxi-

mum distance between its first and last element

must be smaller than 256 bytes. Consequently, a

packet of 96 activations can be formed by issuing

between 1 and 12 independent load operations.

Together with control information, load data

is forwarded to the Data Sequencer. Weights are

captured in a prefetch buffer and issues to execu-

tion as needed. Activations are stored in the Data

Cache, from where 96 elements are gathered and

sent to the MAC array. Commands to the data-

path are also funneled from the Data Sequencer,

controlling execution enable, accumulator shift,

SIMD program start, store addresses, etc.

The SIMD processor executes the same pro-

gram for each group of 96 accumulator results

unloaded from the MAC array. It is synchronized

by control information generated within the

Address Sequencer, and it can decode, issue,

and execute a stream of SIMD arithmetic instruc-

tions. While the SIMD unit has its own register

file and it controls the data movement in the

datapath, it does not control the destination

address where the result is stored. Store

addresses and any pooling controls are gener-

ated by the Address Sequencer when it selects

the 96 � 96 output slice to be worked on.

ARCHITECTURAL DECISIONS AND
RESULTS

When implementing very wide machines like

our MAC array and SIMD processor, the

primary concerns are always tied to its operat-

ing clock frequency. A high clock frequency

makes it easier to achieve the target perfor-

mance, but it typically requires some logic sim-

plifications which in turn hurt the utilization of

specific algorithms.

We decided to optimize this design for deep

convolutional neural networks with a large num-

ber of input and output channels. The 192 bytes

of data and weights that the SRAM provides to

the MAC array every cycle can be fully utilized

only for layers with a stride of 1 or 2 and layers

with higher strides tend to have poorer

utilization.

The accelerator’s utilization can vary signifi-

cantly depending on the size and shape of the

MAC array, as shown in Figure 8. Both the incep-

tion-v4 and the Tesla Vision network show signif-

icant sensitivity to the height of the MAC array.

While processing more output channels at the

same time can hurt overall utilization, adding

that capability is relatively cheap since they all

share the same input data. Increasing the width

of the array does not hurt utilization as much,

but it requires significantly more hardware

resources. At our chosen design point (96 � 96

MAC array), the average utilization for these net-

works is just above 80%.

Another tradeoff we had to evaluate is the

SRAM size. Neural networks are growing in size,

so adding as much SRAM as possible could be a

way to future-proof the design. However, a signifi-

cantly larger SRAM would grow the pipeline

depth and the overall area of the chip, increasing

both power consumption and the total cost of the

system. On the other hand, a convolutional layer

too large to fit in SRAM can always be broken into

multiple smaller components, potentially paying

some penalty for spilling and filling data to the

Figure 8. Achieved utilization versus MAC array dimension.

March/April 2020 33
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

DRAM. We chose 32 MB of SRAM per accelerator

based on the needs of our current networks and

on ourmedium-term scaling projections.

CONCLUSION
Tesla’s FSD Computer provides an excep-

tional 21� performance uplift over commer-

cially available solutions used in our previous

hardware while reducing cost, all at a modest

25% extra power. This level of performance

was achieved by the uncompromising adher-

ence to the design principle we started with.

At every step, we maximized the utilization of

the available compute bandwidth with a high

degree of data reuse and a minimalistic design

for the control flow. This FSD Computer will

be the foundation for advancing the FSD fea-

ture set.

The key learning

from this work has

been the tradeoff

between efficiency

and flexibility. A

custom solution

with fixed-function

hardware offers the

highest efficiency,

while a fully pro-

grammable solution

is more flexible but

significantly less

efficient. We finally

settled on a solu-

tion with a con-

figurable fixed-

function hardware that executes the most

common functions very efficiently but added a

programmable SIMD unit, which executes less

common functions at a lower efficiency. Our

knowledge of the Tesla workloads deployed

for inference allowed us to make such a trade-

off with a high level of confidence.

& REFERENCES

1. Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object

recognition with gradient-based learning,” in

Proceeding: Shape, Contour andGrouping inComputer

Vision. New York, NY, USA: Springer-Verlag, 1999.

2. W. Rawat and Z. Wang, “Deep convolutional neural

networks for image classification: A comprehensive

review,”Neural Comput., vol. 29, no. 9, , pp. 2352–2449,

Sep. 2017.

3. K. Sato, C. Young, and D. Patterson, “An in-depth look

at Google’s first tensor processing unit,” Google Cloud

Platform Blog, May 12, 2017.

4. N. P. Jouppi et al., “In-datacenter of a performance

analysis tensor processing unit,’’ in Proc. 44th Annu.

Int. Symp. Comput. Archit., 2017, vol. 1, pp. 1–12.

5. I. Cutress, “AMD zen 2 microarchitecture analysis:

Ryzen 3000,’’ AnandTech, Jun. 10, 2019.

6. “NVIDIA volta AI architecture,” NVIDIA, 2018. [Online].

Available: https://www.nvidia.com/en-us/data-center/

volta-gpu-architecture/

7. J. Choquette, “Volta: Programmability and performance,”

Nvidia, Hot Chips, 2017. [Online]. Available: https://www.

hotchips.org/wp-content/uploads/hc_archives/hc29/

HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/

HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf

8. M. Horowitz, “Computing’s energy problem,” in IEEE

Int. Solid-State Circuits Conf. Dig. Tech. Papers, 1999,

pp. 10–14.

9. M. Komorkiewicz, M. Kluczewski, and M. Gorgon,

“Floating point HOG implementation of for real-time

multiple object detection,” in Proc. 22nd Int. Conf.

Field Programm. Logic Appl., 2012, pp. 711–714.

Emil Talpes is a Principal Engineer with Tesla, Palo

Alto, CA, USA, where he is responsible for the archi-

tecture and micro-architecture of inference and train-

ing hardware. Previously, he was a principal member

of the technical staff at AMD, working on the micro-

architecture of �86 and ARM CPUs. He received the

Ph.D. degree in computer engineering from Carne-

gie Mellon University, Pittsburgh, PA, USA. Contact

him at etalpes@tesla.com.

Debjit Das Sarma is a Principal Autopilot Hard-

ware Architect with Tesla, Palo Alto, CA, USA, where

he is responsible for the architecture and micro-

architecture of inference and training hardware.

Prior to Tesla, he was a Fellow and Chief Architect

of several generations of �86 and ARM processors

at AMD. His research interests include computer

architecture and arithmetic with focus on deep

learning solutions. He received the Ph.D. degree in

computer science and engineering from Southern

Methodist University, Dallas, TX, USA. Contact him

at ddassarma@tesla.com.

Tesla’s FSDComputer

provides an exceptional

21x performance uplift

over commercially

available solutions used

in our previous

hardwarewhile

reducing cost, all at a

modest 25%extra

power. This level of

performancewas

achieved by the

uncompromising

adherence to the

design principle we

started with.

Hot Chips

34 IEEE Micro

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
mailto:etalpes@tesla.com
mailto:ddassarma@tesla.com

Ganesh Venkataramanan is a Senior Director

Hardware with Tesla, Palo Alto, CA, USA, and

responsible for Silicon and Systems. Before

forming the Silicon team with Tesla, he led AMD’s

CPU group that was responsible for many genera-

tions of �86 and ARM cores. His contributions

include industry’s first �86-64 chip, first Dual-

Core �86 and all the way to Zen core. He

received the Master’s degree from IIT Delhi, Delhi,

India, in the field of integrated electronics

and Bachelor’s degree from Bombay Uni-

versity, Mumbai, Maharashtra. Contact him at

gvenkataramanan@tesla.com.

Peter Bannon is a VP of hardware engineering

with Tesla, Palo Alto, CA, USA. He leads the team

that created the Full Self Driving computer that is

used in all Tesla vehicles. Prior to Tesla, he was the

Lead Architect on the first 32b ARM CPU used in the

iPhone 5 and built the team that created the 64b

ARM processor in the iPhone 5s. He has been

designing computing systems for over 30 years at

Apple, Intel, PA Semi, and Digital Equipment Corp.

Contact him at pbannon@tesla.com.

Bill McGee is a Principal Engineer leading a

machine learning compiler team, mainly foc-

used on distributed model training on custom

hardware. He received the BSSEE degree in

microelectronic engineering from Rochester Institute

of Technology, Rochester, NY, USA. Contact him at

bill@mcgeeclan.org.

Benjamin Floering is a Senior Staff Hardware

Engineer with Tesla, Palo Alto, CA, USA, whose

research interests include low power design as well

as high-availability and fault tolerant computing. He

is also a member of IEEE. He received the BSEE

degree from Case Western Reserve University,

Cleveland, OH, USA, and the MSEE degree from Uni-

versity of Illinois at Urbana-Champaign, Champaign,

IL, USA. Contact him at floering@ieee.org.

Ankit Jalote is a Senior Staff Autopilot Hardware

Engineer. He is interested in the field of computer

architecture and the hardware/software relationship

in machine learning applications. He received the

Master’s degree in electrical and computer engineer-

ing from Purdue University, West Lafayette, IN, USA.

Contact him at ajalote@tesla.com.

Christopher Hsiong is a Staff Autopilot Hardware

Engineer with Tesla, Palo Alto, CA, USA. His

research interests include computer architecture,

machine learning, and deep learning architecture.

He received the Graduate degree from the University

of Michigan Ann Arbor, Ann Arbor, MI, USA. Contact

him at chsiong@tesa.com.

Sahil Arora is a member of Technical Staff with

Tesla, Palo Alto, CA, USA. His research interests

are machine learning, microprocessor architecture,

microarchitecture design, and FPGA design. He

received the Master’s degree in electrical engineer-

ing from Cornell University, Ithaca, NY, USA, in 2008.

Contact him at saarora@tesla.com.

Atchyuth Gorti is a Senior Staff Autopilot Hard-

ware Engineer with Tesla, Palo Alto, CA, USA. His

research interests include testability, reliability, and

safety. He received the Master’s degree from the

Indian Institute of Technology, Bombay, in reliability

engineering. Contact him at agorti@tesla.com.

Gagandeep S Sachdev is a Staff Hardware Engi-

neer with Tesla, Palo Alto, CA, USA. He has worked as

a Design Engineer with AMD and ARM. His research

interests include computer architecture, neural net-

works, heterogeneous computing, performance anal-

ysis and optimization, and simulation methodology.

He received the Master’s degree from University of

Utah, Salt Lake City, UT, USA, in computer engineer-

ing, with research topic of compiler-based cache

management in many core systems. Contact him at

gsachdev@tesla.com.

March/April 2020 35
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 16:46:46 UTC from IEEE Xplore. Restrictions apply.

mailto:gvenkataramanan@tesla.com
mailto:pbannon@tesla.com
mailto:floering@ieee.org
mailto:ajalote@tesla.com
mailto:chsiong@tesa.com
mailto:saarora@tesla.com
mailto:agorti@tesla.com
mailto:gsachdev@tesla.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

